1.1 Representation of Control System Components:

To investigate the performance of control systems, it's necessary to obtain the mathmatical relationship relating controlled variable to the reference input for both of the tollowing systems:
I. Open-Loop Control System: A system in which the output has no effect on the control action (the output neither measured non feedback for comparison with the input). The transtor function of such
 control system is:

$$
\left|\frac{\text { Output }}{\text { Input }}=G(D)\right|
$$

II. Closed_Loop Control System:

A system that maintain a relationship between the output and the reference input by comparing them and using the difference as amiens of control.

The transfer function could be obtained by uriting the mathematical equations describing the operation of each comporent between input and output.

1.2 Control Systems
1.2.1 Mechanical Components.
A) Spring:

The relation of the spring is:

$$
F=k \cdot x
$$

where:

$X \equiv$ displacement (m)
$K \equiv$ stiffness (N / m)
however, system transfer function $=\frac{\text { Output }}{\text { Input }}$

$$
\therefore \frac{x}{F}=\frac{1}{k}
$$

\therefore the spring system above can be represented in a Bock diagram form as:
here;

$$
F=\text { Input } \quad X \equiv \text { output }
$$

Block Diagram Form
B) Viscous Damping

The relationship of the damper is:

$$
F=C \dot{x}
$$

where:

$$
\dot{x}=\frac{d x}{d t}=D x
$$

So, the transfer function is $\frac{X}{F}=\frac{1}{C D}$ here; $D \equiv$ symbol which indicates differentiation with respect to time.
 Form
C. Mass

The relationship of mass is :

$$
F=m \cdot \ddot{x} \quad>\quad F=m \cdot D^{2} \cdot x
$$

\therefore the transfer function is:

$$
\frac{x}{F}=\frac{1}{m D^{2}}
$$

m : mass (Kg)

Block Diagram
I. Mechanical Elements Connections
σ Case 1: Series Connection (Parallel)

$$
\begin{aligned}
F & =F_{\text {spring }}+F_{\text {damping }} \\
F & =k \cdot x+C \dot{x} \\
& =k \cdot x+C D x \\
F & =(k+C D) x
\end{aligned}
$$

$\therefore \frac{\text { Output }}{\text { Input }}=\frac{X}{F}=\frac{1}{K+C D}$
70 $F \rightarrow \frac{1}{K+C D}$

Case 2: Second order system

$$
\begin{aligned}
& \text { } \operatorname{\sum Forces~}=m \cdot \ddot{x} \\
\therefore & F-F_{s}-F_{d}=m \ddot{x} \\
& F-K x-C \dot{x}=m \ddot{x} \\
& F=m D^{2} x+C D x+k x \\
& F=\left(m D^{2}+C D+K\right) x \\
\therefore & \frac{\text { Output }}{\text { Input }}=\frac{x}{F}=\frac{1}{m D^{2}+C D+K} \quad \rightarrow
\end{aligned}
$$

σ Case 3: Parallel Connection (Series)

$$
\begin{aligned}
& x=X_{s}+X_{d} \\
& x=F / K+F / C D \\
& x=\left(\frac{1}{k}+\frac{1}{C D}\right) F
\end{aligned}
$$

\therefore the transfer function is

$$
\frac{\text { Output }}{\text { Input }}=\frac{X}{F}=\frac{1}{K}+\frac{1}{C D}=\frac{C D+K}{K \cdot C D}
$$

- Case 4:

$$
\begin{align*}
& x=x_{s}+x_{d}+x_{2} \tag{1}\\
\Rightarrow & x=\frac{F}{k_{1}}+\frac{F}{C D}+x_{2} \tag{2}
\end{align*}
$$

here; x_{2} can be found according to case (2) as :

$$
\begin{equation*}
x_{2}=\frac{F}{m D^{2}+C_{2} D+K_{2}} \tag{3}
\end{equation*}
$$

\therefore from equations (2) and (3), we can obtain;

$$
x=\frac{F}{K_{1}}+\frac{F}{C_{1} D}+\frac{F}{m D^{2}+C_{2} D+K_{2}}
$$

$\therefore \quad \frac{X}{F}=\frac{1}{K_{1}}+\frac{T}{C_{1} D}+\frac{1}{m D^{2}+C_{2} D+K_{2}}$

$$
F \rightarrow \frac{1}{k_{1}}+\frac{1}{C_{1} D}+\frac{1}{m D^{2}+C_{2} D+k_{2}} \rightarrow x
$$

σ Case 5:

$$
\begin{array}{ll}
& \sum M_{0}=0 \\
& F(3 L)=F_{2}(2 L)+F_{1}(L) \\
\therefore & 3 F=2 F_{2}+F_{1} \tag{1}
\end{array}
$$

from similarity of triangles, we can obtain:

$$
\begin{gather*}
\frac{x}{L}=\frac{X_{2}}{2 L} \\
\therefore x_{2}=2 x \tag{2}\\
F_{1}-F_{d}=m \ddot{x} \\
F_{1}=m D^{2} x+C D x \tag{3}\\
F_{2}=K x_{2}=2 K x \tag{4}
\end{gather*}
$$

From equations (1), (3) and (4)
$\Rightarrow \quad 3 F=m D^{2} x+C D x+2(2 k x)$

$$
\therefore \frac{X}{F}=\frac{3}{m D^{2}+C D+4 K}
$$

II. Grounded. Chair Representation.

Mechanical systems can be represented by grounded chair representation using the steps as:

1. Graph the coordinates and put the forces effect at the above coordinate and the ground below.
2. Input all components, and array it with the coordinates.
σ Example:

Solution:

$$
\begin{align*}
& \sum F=m \ddot{x} \\
& F_{-} F_{S}-F_{1}=m_{1} \ddot{x} \tag{1}
\end{align*}
$$

from figure (2),

$$
x=x_{1}+y
$$

$$
x=\frac{f_{1}}{C D+k}+y
$$

$$
x
$$

OR

$$
\begin{equation*}
x=\frac{f_{1}}{C D+k}+\frac{f_{1}}{m_{2} D^{2}+k_{2}} \tag{2}
\end{equation*}
$$

Figure (2)

$$
F=\left(m_{1} D^{2}+k_{1}+\frac{1}{\frac{1}{C D+k}+\frac{1}{m_{2} D^{2}+k_{2}}}\right) x
$$

$$
\text { How. : Find } \frac{y}{x} d \frac{y}{F}
$$

व Example:
For the system shown, find $\frac{x}{F}, \frac{y}{F}$ and $\frac{y}{x}$

Solution:

$$
\begin{align*}
& \sum F=m_{1} \cdot \ddot{x} \\
& F-f_{s}-f_{d}-f_{1}=m_{1} \ddot{x} \tag{1}
\end{align*}
$$

from figure (2); we get:

$$
\begin{align*}
& x=x_{1}+y \\
& x=\frac{f_{1}}{k_{2}}+y \tag{2}
\end{align*}
$$

and;

$$
\begin{align*}
& f_{1}=m_{2} \cdot \ddot{y} \\
& f_{1}=m_{2} \cdot D^{2} \cdot J \tag{3}
\end{align*}
$$

from equations (2) and (3),

$$
\begin{equation*}
k_{2}(x-y)=m_{2} D^{2} \cdot y \quad \stackrel{O R}{=} \quad x=\frac{f_{1}}{k_{2}}+\frac{f_{1}}{m_{2} D^{2}} \tag{4}
\end{equation*}
$$

$\Rightarrow k_{2} x=\left(m_{2} D^{2}+k_{2}\right) y$

$$
\begin{equation*}
\therefore \frac{y}{x}=\frac{k_{2}}{m_{2} D^{2}+k_{2}} \tag{5}
\end{equation*}
$$

Sub. equation (4) in equation (1) AD

$$
\begin{align*}
& F-k_{1} x-C_{1} D x-\frac{x}{\frac{1}{k_{2}}+\frac{1}{m_{2} D^{2}}}=m_{1} \cdot D^{2} \cdot x \\
\therefore & F=\left(m_{1} D^{2}+C D+k+\frac{1}{\frac{1}{k_{2}}+\frac{1}{m_{2} D^{2}}}\right) x \tag{6}
\end{align*}
$$

now, sub. equation (8) in equation (6) \rightarrow

$$
F=\left(m_{1} D^{2}+C_{1} D+K_{1}+\frac{1}{\left.\frac{1}{K_{2}}+\frac{1}{m_{2} D^{2}}\right)\left(\frac{m_{2} D^{2}+K_{2}}{K_{2}}\right) y . \text { sub. equation (8) in equation (6) }}\right.
$$

III. Gear Trains and Timing Belts.

A gear train or timing belt over pulleys is a mechanical device that transmits energy from one part of a system to another in such a way that force, torque, speed and displace. ement are altered.

Fol two gears shown coupled in the figure, where the inertia and friaction of the gears are neglected in the ideal case considered here:

1. The number of teeth on the gear is proportional to the radius of gers, that is:

$$
\begin{equation*}
\frac{r_{1}}{r_{2}}=\frac{N_{1}}{N_{2}} \tag{1}
\end{equation*}
$$

2. The linear distance traversed along the surface of each gear is same. Therefore;

$$
r_{1} \theta_{1}=r_{2} \theta_{2}
$$

$O R$

$$
\begin{equation*}
\frac{r_{1}}{r_{2}}=\frac{\theta_{2}}{\theta_{1}} \tag{2}
\end{equation*}
$$

3. The work done by one gear is same as that of the other

$$
\begin{equation*}
T_{1} \cdot \theta_{1}=T_{2} \cdot \theta_{2} \tag{3}
\end{equation*}
$$

from equations (1), (2) and (3) with the angular velocities of the two gears ω_{1} and ω_{2} lead to;

$$
\begin{equation*}
\frac{T_{1}}{T_{2}}=\frac{\theta_{2}}{\theta_{1}}=\frac{N_{1}}{N_{2}}=\frac{\omega_{2}}{\omega_{1}}=\frac{\Gamma_{1}}{r_{2}}=n \tag{4}
\end{equation*}
$$

For timing belts and chain drives serve the same purposes as the gear train except that they allow the transfor of energy over a longer distance with using an excessive number of gears as shown.

Assuming that there is no slippage between the belt and the pulleys, the equation (4) can be applied to this case.

The reflection and transmittance of torque, inertia, friction and soon, is similar to that of a gear train.

Example: In practice, two gears do have inertia coupled as shown here, where:
T : applied torque by motor
θ_{1}, θ_{2} : angular displacements.
I_{1}, I_{2} : mass moment of inertia
G_{1}, C_{2} : coefficients of damping
k_{1}, k_{2} : torsional stiffness.

$$
n=\frac{N_{1}}{N_{2}} \equiv \text { gear ratio }
$$

oR $n=\frac{\omega_{2}}{\omega_{1}}$

Balareing the torque on the motor and load shafts are:

$$
\begin{aligned}
& I_{1} \ddot{\theta}_{1}+C_{1} \cdot \dot{\theta}_{1}+k_{1} \theta_{1}=T_{-} T_{1} \\
& I_{2} \ddot{\theta}_{2}+C_{2} \dot{\theta}_{2}+K_{2} \theta_{2}=T_{2} \\
\because & T_{1} \cdot \dot{\theta}_{1}=T_{2} \cdot \dot{\theta}_{2} \gg \frac{T_{1}}{T_{2}}=\frac{\dot{\theta}_{2}}{\dot{\theta}_{1}^{\circ}}=n
\end{aligned}
$$

$$
\therefore I_{1} \ddot{\theta}_{1}+C_{1} \dot{\theta}_{1}+K_{1} \theta_{1}=T_{-n} T_{2}=\operatorname{Tn}\left(I_{2} \ddot{\theta}_{2}+C_{2} \dot{\theta}_{2}+K_{2} \theta_{2}\right)
$$

by substituting $\theta_{2}=n . \theta_{1}$ in the equation we get :

$$
\left(I_{1}+n^{2} I_{2}\right) \ddot{\theta}_{1}+\left(C_{1}+n^{2} C_{2}\right) \dot{\theta}_{1}+\left(K_{1}+n^{2} K_{2}\right) \dot{\theta}_{1}^{\prime}=T
$$

1.2.2 Hydraulic Systems.

Hydraulics is the study of incompressible liquids, and hydraulic devices use an incompressible liquids such as oil for their working medium. Liquid level systems consisting of storage tanks and connecting pipes are a class of hydraulic systems wh. ose driving force is due to relative differences in the liquid heights in the tanks, as shown in the figure below. When the pressure difference across a flow restriction is small, the vdume rate of the flow (Q) is proportional to the pressure drop $\left(P_{1}-P\right)$ across the restriaction.

$$
\begin{align*}
& Q=\frac{P_{1}-P}{R_{F}} \tag{1}\\
& Q=A \cdot V=A \cdot \dot{H}=A \cdot D H \\
& \because P=P H \\
& \therefore Q=\frac{A}{P} D P
\end{align*}
$$

$$
\Rightarrow D=C_{F} \cdot D P
$$

σ Example: For the tank shown in the figure, obtain the transfer function relating the deviation in head $(h(t))$ as output to the deviation in flow $\left(\varphi_{1}\right)$ as input.
Solution:
For the liquid balance in the tank;

$$
\begin{align*}
P_{1} & =\Phi_{2}+A \cdot h \\
\Phi_{1} & =P_{2}+A D h \tag{1}\\
\Phi_{2} & =\frac{P_{1}-P_{2}}{R_{F}} \\
\because P_{2} & =0 \Rightarrow Q_{2}=\frac{P_{1}}{R_{F}} \tag{2}
\end{align*}
$$

Sub. equation (2) in equation (1) $\rightarrow D Q_{1}=\frac{P_{1}}{R_{F}}+A D h$
however, $P_{1}=\rho g h$; however, $P_{i}=\rho g h$;

$$
\begin{aligned}
\therefore \Phi_{1} & =\left[\frac{\rho g}{R_{F}}+A D\right] h \\
\therefore \frac{h}{\Phi_{1}} & =\frac{1}{\frac{\rho g}{R_{F}}+A D}=\frac{1}{\frac{\rho g}{R_{F}}\left(1+\frac{A \rho g}{R_{F}} D\right)} \\
& =\frac{\frac{R_{F}}{\rho g}}{\left(1+\frac{A P g}{R_{F}} D\right)}=\frac{\frac{R_{F}}{\rho g}}{1+\tau D}
\end{aligned}
$$

where:

$$
T=\frac{A \rho g}{R_{F}}
$$

$$
\xrightarrow{Q_{1}} \frac{R_{F} / \rho g}{1+\tau D} \quad h(t)
$$

- Example: Determine the equation for the pressure (P) as a function of the inlet $\left(P_{1}\right)$ (P_{2} should not appear in this equation).

Solution:
For the first rank :

$$
\begin{aligned}
\Phi_{1} & =P_{2}+A H_{2} \\
\Phi_{1} & =P_{2}+C_{F_{1}} \cdot D P_{2} \\
\because \Phi_{1} & =\frac{P_{1}-P_{2}}{R_{F_{1}}} \\
\Phi_{2} & =\frac{P_{2}-P}{R_{F_{2}}}
\end{aligned}
$$

$\therefore C_{F_{1}} D P_{2}=\frac{P_{1}-P_{2}}{R_{F_{1}}}-\frac{P_{2}-P}{R_{F_{2}}}$

* $R_{F_{1}}$ to get:
$\Rightarrow R_{F_{1}} \cdot C_{F_{1}} \cdot D P_{2}=P_{1}-P_{2}-\frac{R_{F_{1}}}{R_{F_{2}}} \cdot P_{2}+\frac{R_{F_{1}}}{R_{F_{2}}} \cdot P$

$$
\begin{equation*}
\therefore P_{1}=\left(1+R_{F_{1}} \cdot C_{F_{1}} \cdot D+\frac{R_{F_{1}}}{R_{F_{2}}}\right) P_{2}-\frac{R_{F_{1}}}{R_{F_{2}}} \cdot P \tag{1}
\end{equation*}
$$

For the second tank:

$$
\begin{align*}
Q_{2} & =Q_{3}+A H_{1} \\
& =Q_{3}+C_{F_{2}} \cdot P P \\
\therefore C_{F_{2}} \cdot D P & =Q_{2}-Q_{3} \quad \text { but } Q_{2}=\frac{P_{2}-P}{R_{F_{2}}} \quad \text { and } P_{3}=\frac{P-0}{R_{F_{3}}} \\
\therefore C_{F_{2}} \cdot D P & =\frac{P_{2}-P}{R_{F_{2}}}-\frac{P}{R_{F_{3}}} \quad \times R_{F_{2}} \text { to get: } \\
& R_{F_{2}} \cdot C_{F_{2}} \cdot D P=P_{2}-P-\frac{R_{F_{2}} P}{R_{F_{3}}} \tag{2}
\end{align*}
$$

$\therefore P_{2}=\left(1+R_{F_{2}} \cdot C_{F_{2}} \cdot D+\frac{R_{F_{2}}}{R_{F_{3}}}\right) P$
1.2.2 Hydraulic Systems.

Hydraulics is the study of incompressible liquids, and hydraulic devices use an incompressible liquids such as oil for their working medium. Liquid level systems consisting of storage tanks and connecting pipes are a class of hydraulic systems wh. ose driving force is due to relative differences in the liquid heights in the tanks, as shown in the figure below. When the pressure difference across a flow restriction is small, the vdume rate of the flow (Q) is proportional to the pressure drop $\left(P_{1}-P\right)$ across the restriaction.

$$
\begin{align*}
& Q=\frac{P_{1}-P}{R_{F}} \tag{1}\\
& Q=A \cdot V=A \cdot \dot{H}=A \cdot D H \\
& \because P=P H \\
& \therefore Q=\frac{A}{P} D P
\end{align*}
$$

$$
\Rightarrow D=C_{F} \cdot D P
$$

σ Example: For the tank shown in the figure, obtain the transfer function relating the deviation in head $(h(t))$ as output to the deviation in flow $\left(\varphi_{1}\right)$ as input.
Solution:
For the liquid balance in the tank;

$$
\begin{align*}
P_{1} & =\Phi_{2}+A \cdot h \\
\Phi_{1} & =P_{2}+A D h \tag{1}\\
\Phi_{2} & =\frac{P_{1}-P_{2}}{R_{F}} \\
\because P_{2} & =0 \Rightarrow Q_{2}=\frac{P_{1}}{R_{F}} \tag{2}
\end{align*}
$$

Sub. equation (2) in equation (1) $\rightarrow D Q_{1}=\frac{P_{1}}{R_{F}}+A D h$
however, $P_{1}=\rho g h$; however, $P_{i}=\rho g h$;

$$
\begin{aligned}
\therefore \Phi_{1} & =\left[\frac{\rho g}{R_{F}}+A D\right] h \\
\therefore \frac{h}{\Phi_{1}} & =\frac{1}{\frac{\rho g}{R_{F}}+A D}=\frac{1}{\frac{\rho g}{R_{F}}\left(1+\frac{A \rho g}{R_{F}} D\right)} \\
& =\frac{\frac{R_{F}}{\rho g}}{\left(1+\frac{A P g}{R_{F}} D\right)}=\frac{\frac{R_{F}}{\rho g}}{1+\tau D}
\end{aligned}
$$

where:

$$
T=\frac{A \rho g}{R_{F}}
$$

$$
\xrightarrow{Q_{1}} \frac{R_{F} / \rho g}{1+\tau D} \quad h(t)
$$

- Example: Determine the equation for the pressure (P) as a function of the inlet $\left(P_{1}\right)$ (P_{2} should not appear in this equation).

Solution:
For the first rank :

$$
\begin{aligned}
\Phi_{1} & =P_{2}+A H_{2} \\
\Phi_{1} & =P_{2}+C_{F_{1}} \cdot D P_{2} \\
\because \Phi_{1} & =\frac{P_{1}-P_{2}}{R_{F_{1}}} \\
\Phi_{2} & =\frac{P_{2}-P}{R_{F_{2}}}
\end{aligned}
$$

$\therefore C_{F_{1}} D P_{2}=\frac{P_{1}-P_{2}}{R_{F_{1}}}-\frac{P_{2}-P}{R_{F_{2}}}$

* $R_{F_{1}}$ to get:
$\Rightarrow R_{F_{1}} \cdot C_{F_{1}} \cdot D P_{2}=P_{1}-P_{2}-\frac{R_{F_{1}}}{R_{F_{2}}} \cdot P_{2}+\frac{R_{F_{1}}}{R_{F_{2}}} \cdot P$

$$
\begin{equation*}
\therefore P_{1}=\left(1+R_{F_{1}} \cdot C_{F_{1}} \cdot D+\frac{R_{F_{1}}}{R_{F_{2}}}\right) P_{2}-\frac{R_{F_{1}}}{R_{F_{2}}} \cdot P \tag{1}
\end{equation*}
$$

For the second tank:

$$
\begin{align*}
Q_{2} & =Q_{3}+A H_{1} \\
& =Q_{3}+C_{F_{2}} \cdot P P \\
\therefore C_{F_{2}} \cdot D P & =Q_{2}-Q_{3} \quad \text { but } Q_{2}=\frac{P_{2}-P}{R_{F_{2}}} \quad \text { and } P_{3}=\frac{P-0}{R_{F_{3}}} \\
\therefore C_{F_{2}} \cdot D P & =\frac{P_{2}-P}{R_{F_{2}}}-\frac{P}{R_{F_{3}}} \quad \times R_{F_{2}} \text { to get: } \\
& R_{F_{2}} \cdot C_{F_{2}} \cdot D P=P_{2}-P-\frac{R_{F_{2}} P}{R_{F_{3}}} \tag{2}
\end{align*}
$$

$\therefore P_{2}=\left(1+R_{F_{2}} \cdot C_{F_{2}} \cdot D+\frac{R_{F_{2}}}{R_{F_{3}}}\right) P$

Sub. in equation (1);

$$
\begin{aligned}
P_{1} & =\left(1+R_{F_{1}} \cdot C_{F_{1}} \cdot D+\frac{R_{F_{1}}}{R_{F_{2}}}\right)\left(1+R_{F_{2}} \cdot C_{F_{2}} \cdot D+\frac{R_{F_{2}}}{R_{F_{3}}}\right) P-\frac{R_{F_{1}}}{R_{F_{2}}} P \\
\therefore \frac{P}{P_{1}} & =1 /\left(1+R_{F_{1}} \cdot C_{F_{1}} \cdot D+\frac{R_{F_{1}}}{R_{F_{2}}}\right)\left(1+R_{F_{2}} \cdot C_{F_{2}} \cdot D+\frac{R_{F_{2}}}{R_{F_{3}}}\right)-\frac{R_{F_{1}}}{R_{F_{2}}}
\end{aligned}
$$

1.2.3 Pneumatic Systems.

Whit hydraulic devices use an incompressible liquid, the working medium in a Pneumatic device is a compressible Huid, such as air with many Kinds such as:
I. Pneumatic Bellow.

It is an expandable chamber, where the elasticity of the of the walls is represented by a spring, the change in pressure causes a displacement from equilibrium of the plane as shown in the figure. For small pressure difference, the mass rate of flow (\dot{m}) through a restriction is proportional to the pressure difference $\left(P_{1}-P_{2}\right)$, so:

$$
\begin{align*}
\dot{m} & =\frac{P_{1}-P_{2}}{R_{F}} \tag{1}\\
\because P V & =m \cdot R \cdot T \quad \text { on } m=\frac{P V}{R T} \quad \text { and } \dot{m}=\frac{d m}{d t} \\
\therefore \frac{d m}{d t} & =\frac{V}{R T} \cdot \frac{d P}{d t}=C_{F} \cdot D P \\
\circ \dot{m} & =C_{F} \cdot D P_{2}
\end{align*}
$$

Where:
$R_{F} \equiv$ the equivalent Huid resistance
$C_{F} \equiv \frac{U}{R T}$ equivalent fluid capacitance
For force balance of below:

$$
\begin{equation*}
P_{2} \cdot A=k \cdot X \tag{3}
\end{equation*}
$$

from equations $(1),(2)$ and (3), we get:

$$
\begin{aligned}
& P_{1}-P_{2}=R_{F} \cdot C_{F} \cdot D P_{2} \quad \text { but } P_{2}=\frac{K}{A} \times \\
\therefore & X=\frac{A}{K\left(1+R_{F} \cdot C_{F} \cdot D\right)} \cdot P_{1}
\end{aligned}
$$

II. Pneumatic Flapper Valve.

The flapper value consist of nozzel and lever, with a constant supply pressure (P_{2}) in chamber, controlled by the piston (x) of the Hopper. Therefore, small changes in input motion (x) causes larg changes in the controlled pressure $\left(P_{2}\right)$, as shown; For the flopper motion without (m):

$$
\begin{align*}
& P_{2}=f(x) \\
& P_{2} \propto \frac{1}{x} \ngtr P_{2}=-C_{1} \cdot x \tag{1}
\end{align*}
$$

forces balance gives;

$$
\begin{align*}
& P_{2} \cdot A_{2}=K_{2} \cdot y \tag{2}\\
\Rightarrow & P_{2}=K_{2} \cdot y / A_{2}
\end{align*}
$$

sub. in equation (1) results in;

$$
\begin{aligned}
\frac{K_{2}}{A_{2}} \cdot y & =-C_{1} \cdot x \\
\therefore \frac{y}{x} & =-\frac{C_{1} \cdot A_{2}}{k_{2}}
\end{aligned}
$$

however, for (\dot{m}) balance the equations are:

$$
\begin{equation*}
\dot{m}_{1}=f\left(P_{2}\right) \quad \otimes \quad \dot{m}_{1}=-c_{1} \cdot P_{2} \tag{a}
\end{equation*}
$$

and

$$
\begin{align*}
& \dot{m}_{0}=f\left(x, P_{2}\right) \sim \dot{m}_{0}=C_{2} \cdot x+C_{3} \cdot P_{2} \tag{b}\\
& \dot{m}_{1}-\dot{m}_{0}=A_{2} \cdot D y \tag{c}\\
& P_{2} \cdot A_{2}=k_{2} \cdot y \tag{d}
\end{align*}
$$

give $\rightarrow \frac{y}{x}=-\frac{A_{2} \cdot C}{K_{2}(1+T D)}$
where $T=\frac{A_{2}^{2}}{K_{2}\left(C_{1}+C_{3}\right)}$ and $C=\frac{C_{2}}{C_{1}+C_{3}}$
III. Preumatic Diaphram.

A torce type pneumatic controller operates only on pressure signals, and therefore it is necessary to convert the reference input and controlled variable to corresponding pressure. An example of pneumatic diaphram can be
seen in the figure with mass flow rate (\dot{m}) of dir flowing into chamber can be given as:

$$
\begin{equation*}
\dot{m}=\frac{P_{1}-P_{2}}{R} \tag{1}
\end{equation*}
$$

and the How capacitance;

$$
\begin{equation*}
\dot{m}=C_{F} \cdot D P_{2} \tag{2}
\end{equation*}
$$

from equations (1) and (2);

$$
\begin{equation*}
P_{1}=\left(1+R_{F} \cdot C_{F} \cdot D\right) P_{2} \tag{3}
\end{equation*}
$$

for the force balance of the diaphram;

$$
\Sigma F=m \ddot{z}
$$

$$
\begin{equation*}
\rightarrow P_{2} \cdot A=\left(m D^{2}+C D+K\right) Z \tag{4}
\end{equation*}
$$

from equations (3) and (4), we get;

$$
\begin{equation*}
P_{1}=\left(1+R_{F} \cdot C_{F} \cdot D\right) \frac{m D^{2}+C D+K}{A} \cdot z \tag{5}
\end{equation*}
$$

the How rate through the control valve is givenby;

$$
\begin{equation*}
g=f(z) \quad>\quad q=c_{1} \cdot z \tag{6}
\end{equation*}
$$

Sub. equation (6) in equation (5) \rightarrow

$$
P_{1}=\left(1+R_{F} \cdot C_{F} \cdot D\right) \cdot \frac{m D^{2}+C D+K}{A} \cdot \frac{q}{C_{1}}
$$

$\therefore \quad q=\frac{A C_{1}}{\left(m D^{2}+C D+K\right)\left(1+R_{F} \cdot C_{F} \cdot D\right)} \cdot P_{1}$
1.2.4 Thermal Systems.

It is connection with the system to be controlled, such as those found in chemical processes, power plants and heating-air conditioning of buildings.

For convection heat How from a wall;

$$
\rightarrow \begin{align*}
\Phi & =h \cdot A \cdot\left(T_{1}-T\right) \\
\rightarrow & =\frac{T_{1}-T}{R_{T}} \tag{1}
\end{align*}
$$

where: $Q \equiv$ rate of heat flow
$h \equiv$ coefficient of heat transfer

$A \equiv$ normal cross section area
$\left(T_{1}-T\right) \equiv$ temperature gradient
$R_{T}=\frac{1}{h \cdot A} \equiv$ equivalent thermal resistance
thermal capacitance can be expressed as:

$$
\begin{equation*}
\Phi=m \cdot C_{p} \cdot \frac{d T}{d t} \tag{2}
\end{equation*}
$$

from equations (1) and (2);

$$
m \cdot c_{p} \cdot D T=\frac{T_{1}-T}{R_{T}}
$$

$O R C_{T} \cdot D T=\frac{T-T}{R_{T}}$
$\infty \quad \therefore=\frac{T_{1}}{1+R_{T} \cdot C_{T} \cdot D}$
$\mathscr{Q} \quad T=\frac{T}{1+T D}$
$\left(T=R_{T} \cdot C_{T}\right)$
where: $m \equiv$ mass
$C_{p} \equiv$ specific heat at constant pressure
$C_{T} \equiv$, thermal capacitance $\left(C_{T}=m \cdot(p)\right.$.
σ Example: A heater supplies a heat flux (q) to a room as shown. The temperature of the inside room and the wall is T_{1} and T_{2}, while the ambient temperature T_{a}. Develop a linear model, considering (q) as input and T_{1} as output.
Solution:
For the heat balance of the room;

$$
\begin{equation*}
q=C_{T_{1}} \cdot D T_{1}-q_{i} \tag{I}
\end{equation*}
$$

$O R \quad q=G \cdot D T_{1}-q_{1}$

$$
\begin{aligned}
& q_{1}=h_{1} \cdot A_{r} \cdot\left(T_{1}-T_{2}\right)=\frac{T_{1}-T_{2}}{R_{1}} \\
& q_{2}=h_{2} \cdot A_{2} \cdot\left(T_{2}-T_{a}\right)=\frac{T_{2}-T_{9}}{R_{2}}
\end{aligned}
$$

and,
for heat balance of the wall;

$$
\begin{equation*}
q_{1}=C_{2} \cdot D T_{2}+q_{2} \tag{2}
\end{equation*}
$$

equations (1) and (2) alan be Written as:

$$
q=C_{1} \cdot D T_{1}-\left(\frac{T_{1}-T_{2}}{R_{1}}\right) \quad * R_{1}
$$

© $R_{1} \cdot 9=C_{1} \cdot R_{1} \cdot D T_{1}-T_{1}+T_{2}$
and $q_{1}-q_{2}=C_{2} \cdot D T_{2}$

$$
\begin{align*}
& \therefore \rightarrow C_{2} \cdot D T_{2}=\frac{T_{1}-T_{2}}{R_{1}}+\frac{T_{2}-T_{a}}{R_{2}} \\
&\left(C_{2} \cdot D+\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) T_{2}=\frac{T_{1}}{R_{1}}-\frac{T_{a}}{R_{2}} \tag{4}
\end{align*}
$$

from equations (3) and (4), we get;

$$
q=\frac{\left[\left(C_{1} \cdot R_{1} \cdot D-1\right)+\frac{1}{R_{1}\left(C_{2} \cdot D+1 / R_{1}-1 / R_{2}\right)}\right] T_{1}-\frac{T_{a}}{R_{2}\left(C_{2} D+1 / R_{1}-1 / R_{2}\right)}}{R_{1}}
$$

1.2.5 Angular Displacement.
\sum Torque $=$ Inertia $*$ angular acceleration

$$
\begin{align*}
& T_{-} T_{S}-T_{d}=J \ddot{\theta} \\
& T=\ddot{\theta}+C_{t} \cdot \dot{\theta}+K_{t} \cdot \theta \tag{1}
\end{align*}
$$

where:
$T \equiv$ applied torque (N.m)
$T_{s} \equiv$ stiffness torque (N.m)
$\bar{T}_{d}=$ Damping torque (N.m)
$J \equiv$ Inertia $\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$
$\theta \equiv$ angular displacement
(rad)

$\dot{\theta} \equiv$ angular velocity $\quad(\mathrm{rad} / \mathrm{s})$
$\ddot{\theta} \equiv$ angular acceleration $\left(\mathrm{rad} / \mathrm{s}^{2}\right)$
$C_{t} \equiv$ torsional damping coefficient
$k_{t} \equiv$ torsional stiffness coefficient
equation (1) can be written as:

$$
T=J D^{2} \cdot \theta+C_{t} \cdot D \theta+K_{t} \cdot \theta
$$

OR

$$
\frac{\theta}{T}=\frac{1}{J D^{2}+C_{t} D+K_{t}}
$$

using laplace transform results in;

$$
\frac{\theta(s)}{T(s)}=\frac{1}{J s^{2}+C_{t \cdot S}+K_{t}}
$$

1.2.6 Actuators.

An actuator is a control element that used power to drive the system to be controlled. The power requirment may be small us in the case of positioning a control valve or lang as in the case where a larg load is to be moved.

Electrical motors, hydraulic servometers and pneumatic diaphram type actuators are the common examples of actuators used in electrical, hydraulic and pneumatic control systems respectively.

* Hydraulic Servomotors.
- Case (1):

the continuity equation is:

$$
\begin{equation*}
q=A \cdot v=A \cdot \dot{y}=A D y \tag{2}
\end{equation*}
$$

the balancing forces:

$$
\begin{equation*}
A \Delta P=m \ddot{y}=m D^{2} y \tag{3}
\end{equation*}
$$

where: $A \equiv$ cylinder cross section area.
from equations (1), (2) and (3);

$$
\begin{aligned}
& A D y=C_{1} x-C_{2}\left(\frac{m D^{2}}{A}\right) y \\
\therefore & C_{1} \cdot x=\left(A D+\frac{C_{2} \cdot m}{A} D^{2}\right) y
\end{aligned}
$$

\therefore System transfer function is:

$$
\frac{y}{x}=\frac{C_{1}}{A D+\frac{C_{2} \cdot m}{A} D^{2}}
$$

this transfer function can be Written using Laplace transform as:

$$
\frac{Y(S)}{X(S)}=\frac{C_{1}}{A S+\frac{C_{2} \cdot m}{A} S^{2}} \xrightarrow{X(S)} \frac{C_{1}}{A S+\frac{C_{2} \cdot m}{A} S^{2}} Y(S)
$$

where: $S \equiv$ Laplace Operator if there is no load in the system the different in pressure is zero ($\Delta P=0$).

- Case (2):

$$
\begin{align*}
& q=f(e, \Delta p) \\
& q=C_{1} \cdot e+C_{2} \Delta p \tag{1}
\end{align*}
$$

To find (e), first we consider no displacement ally;
$\rightarrow \frac{e}{x}=\frac{b}{a+b}$

$$
\begin{equation*}
\therefore \quad e=\frac{b}{a+b} x \tag{a}
\end{equation*}
$$

and then no displacement at x;

$$
\begin{align*}
& \rightarrow e=\frac{a}{a+b} y \\
& \therefore \quad e=\frac{a}{a+b} y \tag{b}
\end{align*}
$$

Total (e) can be found from equations (a) and (b);

$$
\begin{equation*}
e=\frac{b}{a+b} x-\frac{a}{a+b} y \tag{2}
\end{equation*}
$$

For special case $a=b$ oD $e=\frac{x-y}{2}$
from equation of motion:

$$
\begin{equation*}
A \Delta P=m \ddot{y}=m D^{2} y \tag{3}
\end{equation*}
$$

from continuity equation:

$$
\begin{equation*}
q=A \dot{y}=A D y \tag{4}
\end{equation*}
$$

from equations (1) and (4) and when $a=b \quad\left(e=\frac{x-y}{2}\right)$:

$$
\begin{aligned}
& A D y=C_{1}\left(\frac{x-y}{2}\right)-C_{2}\left(\frac{m D^{2}}{A}\right) y \\
& 2 A D y+C_{1} \cdot y+\frac{2 C_{2} \cdot m D^{2}}{A} y=C_{1} \cdot x \\
\therefore & \frac{y}{x}=\frac{C_{1}}{\frac{2 C_{2} m}{A} D^{2}+2 A D+C_{1}}
\end{aligned}
$$

which can be Written as:

$$
\frac{\varphi(S)}{x(S)}=\frac{C_{1}}{\frac{2 C_{2} m}{A} S^{2}+2 A S+G_{1}}
$$

for no load $(\Delta P=0)$, the block diagram of the system can be reprerented as:

$$
\begin{align*}
\therefore q & =c \cdot e \tag{1}\\
e & =\frac{b}{a+b} x-\frac{a}{a+b} y \tag{2}\\
q & =A D y \tag{3}
\end{align*}
$$

σ Example: For the control of large industrial process, where it's recessary to have larg quantities of controlled, so two stages amplifier are used as shown in the figure. The first stage coststs of Happer-type amplifier where the pressure $\left(P_{2}\right)$ controlled by the position (x). The second stage is capable of handling larg quantities of flow. Determine the lack diagram for the actuating signal (e) as input and the output pressure (P_{0}).
Solution:

* For the lever with the Same length:

$$
\begin{equation*}
x=\frac{1}{2}(e-z) \tag{1}
\end{equation*}
$$

* For the flopper:

$$
\begin{align*}
P_{2} & =f(x) \text { but } P_{2} \alpha \frac{1}{x} \\
\therefore P_{2} & =-c_{1} x \tag{2}
\end{align*}
$$

and,

$$
\begin{equation*}
P_{2} \cdot A_{2}=K_{2} \cdot y \quad \Rightarrow \quad y=\frac{A_{2}}{K_{2}} P_{2} \tag{3}
\end{equation*}
$$

* For the metering valve:

$$
\begin{equation*}
P_{0}=f(y) \text { but } P_{0} \propto \frac{1}{y} \text { ID } P_{0}=-C_{2} \cdot y \tag{4}
\end{equation*}
$$

* for the feedback bellow:

$$
\begin{equation*}
P_{0} \cdot A_{f}=K_{f} \cdot z \quad m \quad z=\frac{A_{f}}{k_{f}} P_{0} \tag{5}
\end{equation*}
$$

thus, for these equations we can represent the following block diagram:

Example: The system shown in the figure controlling the output temperature (To) of a chamber, such as an industrial oven. The desired temperature (Tin) is indicated by the pointer on the controf arm. The bellow is filled with a liquid expand as (To) increase. Obtain the block diagram for reference temperature (Tin) to the controlled temperature $\left(T_{8}\right)$.
Solution:

* for the desired temp. :

$$
\begin{align*}
\operatorname{Tin} & =f(z) \\
\therefore z & =C_{1} . \tag{1}
\end{align*}
$$

* for the bellow:

$$
\begin{gather*}
\text { length }=t\left(T_{0}\right) \\
L=C_{2} \cdot T_{0} \tag{2}
\end{gather*}
$$

and;

$$
\begin{equation*}
L=z-x \tag{3}
\end{equation*}
$$

* tor the rate of heat How in chamber:

$$
\begin{align*}
& \Phi_{\text {in }}=f(y) \\
& Q_{\text {in }}=C_{3} \cdot y \tag{4}
\end{align*}
$$

* for the actuator:

$$
\begin{align*}
& q=f(e) \\
& q=C_{4} \cdot e \tag{5}\\
& q=A \cdot D_{y} \tag{6}
\end{align*}
$$

* for the lever with $(a=b): \quad 0 \quad e=\frac{b}{a+b} x-\frac{a}{a+b} y$

$$
\begin{equation*}
\therefore e=\frac{x-y}{2} \tag{7}
\end{equation*}
$$

* for the chamber heat balance:

$$
\begin{aligned}
& Q_{\text {in }}=Q_{0}+C_{T} \cdot D T_{0} \\
& \therefore D Q_{0}=\frac{T_{0}-T_{a}}{R_{T}} \\
& \therefore R_{T} \cdot Q_{\text {in }}+T_{a}=\left(1+C_{T} \cdot D\right) T_{0}
\end{aligned}
$$

QR

$$
\begin{equation*}
T_{0}=\frac{R_{T}}{1+C_{T} . D} Q_{i n}+\frac{1}{1+C_{T} . D} T_{q} \tag{8}
\end{equation*}
$$

2.3 Block Diagram Representation.

It is important to note that blocks can be connected in series only if the output of one block is not affected by the next following block. If there are any loading effect between the components, it is necessary to combine these components into a single block. A camplicated block diagram involving many teedbock loops can be simplified by a step-by-step rearrongment, using rules of block diagram g algebra. Some of these important rules are given below:

1. Input-output relation

$$
Y(S)=G(S) \times(S)
$$

2. Multiplication

$$
Y(S)=\left[G_{1}(S) \cdot G_{2}(S)\right] \times(S)
$$

3. Addition and Substraction.

$$
\begin{aligned}
& E(S)=X(S)+Y(S) \\
& E(S)=X(S)-Y(S)
\end{aligned}
$$

4. Combining Blocks in parallel (Forward Loop).

So Eliminating a Feedback Loop.

6. Rearranging Summing Point.

7. Moving a Summing Point Bey and a Block.

8. Moving a Summing Point Ahead of a Block.

9. Moving a Pick oft Point Beyond a Block.

10. Moving a Take-off Point Ahead of a Block.

7

11. Special Cases.
a) Input signal must be positive:

b) Forward_Loop

2.4 Single Input - Single Output System. This type of control system have just single input and single output-
σ Example: Find the transfer function of the block diagram by reducing it.

Solution:
Step (1) :-

Step (2):

Step (3):

Step (4):

- Example: Find the transfer function of the block diagram shown bedel.

Solution:
Step (1)

$$
\frac{Y(S)}{x(S)}=\frac{G_{1} G_{2} G_{3}+G_{1} G_{3} H_{1}}{1+G_{2} H_{2}+G_{2} G_{3} H_{3}+G_{3} H_{1} H_{3}+G_{1} G_{2} G_{3}+G_{1} G_{3} H_{1}}
$$

Example: Find the transfer function of the following lock diagram.

σ Example: Find the transfer function.

2.5 Two Input - One output Systems

For the system shown here, there are two inputs $X(S)$ and $U(s)$ with one output $Y(S)$. So,

$$
y(s)=c \cdot x(s)+c \cdot u(s)
$$

Where:
$Y(S) \equiv$ out put signal
$X(S), U(S) \equiv$ input signal
$C x(S) \equiv T . F$. of the system when $U(S)=0$
$C U(S) \equiv T . F$. of the system when $X(S)=0$
a) when $U(S)=0$

The transfer function of such this loop is:

$$
\begin{aligned}
\frac{C X(S)}{X(S)} & =\frac{G_{1} G_{2}}{1+G_{1} G_{2} H} \\
\therefore C X(S) & =\frac{G_{1} G_{2}}{1+G_{1} G_{2} H} \cdot X(S)
\end{aligned}
$$

b) when $X(S)=0$

The transfer function of this loop is;

$$
\begin{aligned}
\frac{C U(S)}{U(S)} & =\frac{G_{2}}{1+G_{1} G_{2} H} \\
\therefore C U(S) & =\frac{G_{2}}{1+G_{1} G_{2} H} \cdot U(S)
\end{aligned}
$$

now, the overall transfer function is,

$$
\begin{aligned}
Y(S) & =c \times(S)+c u(S) \\
& =\frac{G_{1} G_{2}}{1+G_{1} G_{2} H} \cdot x(S)+\frac{G_{2}}{1+G_{1} G_{2} H} u(S) \\
& =\frac{G_{2}}{1+G_{1} G_{2} H}\left[G_{1} x(S)+u(S)\right]
\end{aligned}
$$

Example: Find $Y(S) / X(S), Y(S) / U(S)$ and $Y(S)$

Solution:
I) when $u(s)=0$

$$
\begin{aligned}
& \therefore \frac{C X(S)}{X(S)}=\frac{Y(S)}{x(S)}=\frac{G_{1} G_{2} G_{3}}{1+G_{2} H_{3}+G_{3} H_{2}+G_{1} G_{2} G_{3} H_{1}} \\
& \therefore C \times(S)=\frac{G_{1} G_{2} G_{3}}{1+G_{2} H_{3}+G_{3} H_{2}+G_{1} G_{2} G_{3} H_{1}} \cdot x(S)
\end{aligned}
$$

II) when $x(5)=0$

$\therefore \frac{C U(S)}{U(S)}=\frac{C(S)}{U(S)}=\frac{G_{3}\left(1+G_{2} H_{3}\right)}{1+G_{2} H_{3}+G_{3} H_{2}+G_{1} G_{2} G_{3} H_{1}}$

$$
C U(S)=\frac{G_{3}\left(1+G_{2} H_{3}\right)}{1+G_{2} H_{3}+G_{3} H_{2}+G_{1} G_{2} G_{3} H_{1}} \cdot U(S)
$$

$$
\begin{aligned}
\therefore Y(S) & =C \times(S)+C U(S) \\
& =\frac{G_{1} G_{2} G_{3}}{1+G_{2} H_{3}+G_{3} H_{2}+G_{1} G_{2} G_{3} H_{1}} \times(S)+\frac{G_{3}\left(1+G_{2} H_{3}\right)}{1+G_{2} H_{3}+G_{3} H_{2}+G_{1} G_{2} G_{3} H_{1}} u(S) \\
& =\frac{G_{3}}{1+G_{2} H_{3}+G_{3} H_{2}+G_{1} G_{2} G_{3} H_{1}} \cdot\left[G_{1} G_{2} \cdot x(S)+\left(1+G_{2} H_{3}\right) U(S)\right]
\end{aligned}
$$

2.6 Two Input - Two Output Systems.

For the system shown, there are two input and two output. So, we assume that $\left(R_{2}=0\right)$; ie. one input $\left(R_{1}\right)$ and then take each of $\left(C_{1}\right)$ and $\left(C_{2}\right)$ seperatly with $\left(R_{1}\right)$ to evaluate $\frac{C_{1}}{R_{1}}$ and $\frac{C_{2}}{R_{1}}$. Thereafter, we assume $\left(R_{1}=0\right)$ to find $\frac{C_{1}}{R_{2}}$ and $\frac{C_{2}}{R_{2}}$. For the example given here, we con find $\frac{C_{2}}{R_{1}}$:

* assume $R_{2}=0$ and $C_{1}=0$, then re-arrang the system to get;

let $A=G_{3}+\frac{G_{1} G_{2} H_{2}}{1-H_{2} G_{4}}$

$$
\xrightarrow{R_{1}} \xrightarrow{A}
$$

2.7 Laplace Transformation

The Laplace Transformation can be used for the solution of linear differential equations. We are concerned here with the transformation of function of time and their time derivatives into functions of a complex variable (S). The solution as a function of time is then obtained by taking the inverse Laplace transformation. The Laplace transform of $f(t)$ is given by:

$$
L[f(t)]=F(s)=\int_{0}^{\infty} f(t) \cdot e^{-s t} \cdot d t
$$

Laplace transform pairs are given in the table below.

$f(t)$	$F(S)$	$F(S)$	
Unit impulse $\delta(t)$	1	$f(t)$	$F \cdot e^{a t}$
Unit step $1(t)$	$\frac{1}{s}$	$\frac{1}{(S-a)^{2}}$	
t	$\frac{1}{s^{2}}$	$e^{a t}$	$\frac{n!}{(S-a)^{n+1}}$
t^{n}	$\frac{n!}{S^{n+1}}$	$e^{a t} \cdot \cos \omega t$	$\frac{\omega t}{(s-a)^{2}+\omega^{2}}$

σ Example: Find the inverse Laplace transform of

$$
F(s)=\frac{s+3}{(s+1)(s+2)}
$$

Solution: The partial -fraction expansion of $F(S)$ is

$$
F(S)=\frac{s+3}{(S+1)(S+2)}=\frac{k_{1}}{s+1}+\frac{k_{2}}{s+2}
$$

the constant k_{1} and k_{2} can be found by;

$$
\begin{aligned}
& * k_{1}=\lim _{s \rightarrow-1}(s+2) \cdot F(s)=\lim _{s \rightarrow-1}(s+1) \cdot \frac{s+3}{(s+2)(s+4)} \\
& \Rightarrow k_{1}=\lim _{s \rightarrow-1} \frac{s+3}{s+2}=2 \\
& * k_{2}=\lim _{s \rightarrow-2}(s+2) \cdot F(s)=\lim _{s \rightarrow-2}(s+2) \frac{s+3}{(s+1)(s+2)} \\
& \Rightarrow k_{2}=\lim _{s \rightarrow-2} \frac{s+3}{s+1}=-1
\end{aligned}
$$

thus; $\quad F(s)=\frac{2}{s+1}-\frac{1}{s+2}$
$m \therefore f(t)=L^{-1}[F(S)]=L^{-1}\left[\frac{2}{s+1}\right]+L^{-1}\left[\frac{-1}{s+2}\right]=2 e^{-t}-e^{-2 t}$

- Example: Obtain the inverse Laplace transform of:

$$
F(s)=\frac{1}{\left(s^{2}+6 s+8\right)(s+6)}
$$

Solution: We can Write;

$$
F(S)=\frac{1}{(S+2)(S+4)(S+6)}
$$

now, the partial fraction equation is;

$$
F(s)=\frac{K_{1}}{s+2}+\frac{K_{2}}{s+4}+\frac{K_{3}}{s+6}
$$

and the constant can be found;

$$
\begin{aligned}
K_{1} & =\lim _{S \rightarrow-2}(S+2) \cdot F(S)=\lim _{S \rightarrow-2}(S+2) \cdot \frac{1}{(S+2)(S+4)(S+6)} \\
& =\lim _{S \rightarrow-2} \cdot \frac{1}{(S+4)(S+6)}=\frac{1}{8}
\end{aligned}
$$

$$
k_{2}=\lim _{s \rightarrow-4}(s+4) \cdot F(s)=\lim _{s \rightarrow-4}(s+4) \cdot \frac{1}{(s+2)(s+4)(s+6)}
$$

$$
=\lim _{s \rightarrow-4} \cdot \frac{1}{(s+2)(s+6)}=-\frac{1}{4}
$$

$$
k_{3}=\lim _{s \rightarrow-6}(s+6) \cdot \frac{1}{(s+2)(s+4)(s+6)}=\lim _{s \rightarrow-6} \cdot \frac{1}{(s+2)(s+4)}=\frac{1}{8}
$$

$\therefore 0 \therefore F(S)=\frac{1 / 8}{S+2}-\frac{1 / 4}{S+4}+\frac{1 / 8}{S+6}$
\therefore the Laplace transform is:

$$
f(t)=\frac{1}{8} e^{-2 t}-\frac{1}{4} e^{-4 t}+\frac{1}{8} e^{-6 t}
$$

- Example: Find the inverse Laplace transformation of the equation;

$$
F(S)=\frac{10}{(S+2)(S+1)^{3}}
$$

Solution: For the repeated zeves, the correspoding partial fraction expansion is;

$$
\begin{aligned}
& \quad \text { pansion is; } \\
& \quad F(S)=\frac{C_{n}}{(S-r)^{n}}+\frac{C_{n-1}}{(S-r)^{n-1}}+\cdots+\frac{C_{1}}{S-r}+\frac{k_{1}}{S-r_{1}}+\cdots \cdot \\
& C_{n}=\lim _{S \rightarrow r}\left[(S-r)^{n} \cdot F(S)\right]
\end{aligned}
$$

$$
\begin{aligned}
& C_{n-1}=\lim _{s \rightarrow r}\left[\frac{d}{d s}\left[(s-r)^{n} \cdot F(s)\right)\right] \\
& C_{n-k}=\lim _{s \rightarrow r}\left[\frac{1}{k_{i}} \cdot \frac{d^{k}}{d s^{k}}\left((s-r)^{n} \cdot F(s)\right)\right]
\end{aligned}
$$

So, for this example;

$$
\begin{aligned}
F(s) & =\frac{C_{3}}{(s+1)^{3}}+\frac{C_{2}}{(s+1)^{2}}+\frac{C_{1}}{(s+1)}+\frac{k_{1}}{s+2} \\
\therefore C_{3} & =\lim _{s \rightarrow-1}(s+1)^{3} \cdot \frac{10}{(s+2)(s+1)^{3}}=\lim _{s \rightarrow-1} \frac{10}{s+2}=10 \\
C_{2} & =\lim _{s \rightarrow-1} \frac{d}{d s}\left[(s+1)^{3} \cdot F(s)\right]=\lim _{s \rightarrow-1} \frac{d}{d s}\left[\frac{10}{s+2}\right] . \\
& =\lim _{s \rightarrow-1} \frac{-10}{(s+2)^{2}}=-10 \\
C_{1} & =\lim _{s \rightarrow-1}\left[\frac{1}{2!} \cdot \frac{d^{2}}{d s^{2}}\left((s+1)^{3} \cdot F(s)\right)=\frac{1}{2} \lim _{s \rightarrow-1} \frac{d^{2}}{d s^{2}}\left(\frac{10}{s+2}\right)\right. \\
& =\frac{1}{2} \lim _{s \rightarrow-1}\left(\frac{10 \times 2 \times(s+2)}{(s+2)^{4}}\right)=10 \\
K_{1} & =\lim _{s \rightarrow-2}(s+2) \cdot F(s)=\lim _{s \rightarrow-2} \frac{10}{(s+1)^{s}}=-10 \\
\therefore F(s) & =\frac{-10}{s+2}+\frac{10}{(s+1)^{3}}-\frac{10}{(s+1)^{2}}+\frac{10}{s+1} \\
\therefore F(t) & =-10 e^{-2 t}+10 \frac{t^{2}}{2} e^{-t}-10 t e^{-t}+10 e^{-t}
\end{aligned}
$$

σ Example: Find $f(t)$ for the function $F(S)=\frac{20}{\left(s^{2}+4 s+13\right)(s+6)}$
Solution: For complex conjugate zero, the partial fraction expansion. is;

$$
F(s)=\frac{k_{c}}{s-a-j b}+\frac{k-c}{s-a+j b}
$$

therefore,

$$
\begin{aligned}
& F(S)=\frac{20}{(S+2-3 j)(S+2+3 j)(S+6)}=\frac{K_{c}}{S+2-3 j}+\frac{K_{-c}}{S+2+3 j}+\frac{K_{1}}{S+6} \\
& K_{c}=\frac{1}{2 b j}|K(a+b j)| e^{a j} \\
& K_{-c}=-\frac{1}{2 b j}|K(a+b j)| e^{-a j}
\end{aligned}
$$

OR $L^{-1}\left[\frac{K c}{S+a+b j}+\frac{K-c}{S+a-b j}\right]=\frac{1}{b}|K(a+b j)| e^{a t} \cdot \sin (b t+\alpha)$
where;

$$
\begin{aligned}
& K(a+b j)=\lim _{s \rightarrow-2+3 j}\left(s^{2}+4 s+13\right) \cdot F(s) \\
&=\lim _{s \rightarrow-2+3 j} \cdot \frac{20}{s+6}=\frac{20}{4+3 j} * \frac{4-3 j}{4-3 j} \\
& \therefore K(a+b j)=3.2-2.4 j \therefore|K(a+b j)|=\sqrt{3} 32^{2}+2.4^{2}=4 \\
& \alpha=\tan ^{-1} \frac{-2.4}{3.2}=-36.86^{\circ} \\
& \therefore L^{-1}\left[\frac{K c}{s+2-3 j}+\frac{K-c}{s+2+3 j}\right]=\frac{1}{3} * 4 * e^{-2 t} \cdot \sin (3 t-36.86) \\
& K_{1}=\lim _{s \rightarrow-6}(s+6) \cdot F(s)=\frac{20}{s^{2}+4 s+13}=0.8
\end{aligned}
$$

$$
\therefore f(t)=0.8 e^{-6 t}+\frac{4}{3} e^{-2 t} \cdot \sin (3 t-36.86)
$$

3.1 Transient Response of Control Systems.

The output variation during the time, it takes to achieve its final value, is called as transient response. The time required to achieve the final value is called "transient period". This can also be defined as that part of the time response which decays to zero after some time as system output reaches to its final value.

Successtulness and accuracy of system depends on the final value reached by the system output which should be very close to what is desired from that system. White reaching to its final value, in the moor time, output should behave smoothly. Thus, final state achieved by the output is called" steady state" while output variations within the time it takes to achieve the steady state is called "ranstent response" of the system.
3.2 Steady State Response of Control Systems.

It is that part of the time response which remains after complete "transient response" vanishes from the system output. This also can be defined as response of the system as time approaches infinity from the time at which transient response completely dies out. The steady state response is generally the final value achieved by the systom output.

Hence, total time response $Y(t)$ We can write as,

$$
Y(t)=Y_{s s} \text { (steady state response) }+Y_{t}(t) \text { (transient response) }
$$

The difference between the desired output and actual output of the system is called "Steady state error" which denoted as Ess. Wis error indicates the accuracy and plays an important rote is designing the system.
3.3 Standard Test Inputs.

In practice, many signals are available which are the functions of time and can be used as reference inputs for the various control systems. The evaluation of the system can be done on the basis of the response given by the system to the standard test inputs.
3.3.1 Step Input Signal :

The step hut signal represents an instantencus charge in the reterence input variable. For example, if the hour is an angular position of a mechanical shaft, the step input represents the sudden rotation of the shaft. The mathematical representation of a step function is;

$$
X(t)=\left[\begin{array}{ll}
R & t \geqslant 0 \\
0 & t<0
\end{array}\right.
$$

where," R " is a constant.
\because the Laplace trantorm of a constant
 value;

$$
x(S)=\frac{R}{S}
$$

and for a unit step signal $x(t)=1$

$$
\rightarrow \quad x(S)=\frac{1}{S}
$$

\therefore the transfer function of the system in S-domain:

$$
\begin{aligned}
& \therefore \frac{Y(S)}{x(s)}=G(s) \\
& \Rightarrow y(s)=G(s) \cdot x(s)=G(s) \cdot \frac{1}{s} \\
& \therefore y(t)=L^{-1}\left(\frac{G(s)}{s}\right)
\end{aligned}
$$

3.3.2 Ramp Input Signal:

In the case of ramp signal, the signal is considered to have a constant change in value with respect to time. mathmatically, aramp function is represented by:

$$
x(t)=\left[\begin{array}{ll}
\text { R.t } & t \geqslant 0 \\
0 & t<0
\end{array}\right.
$$

where, " R " is a constant.
For unit ramp input; $X(t)=t$
\therefore the Laplace transform for such this function is:

$$
x(s)=\frac{1}{s^{2}}
$$

$\therefore \therefore Y(S)=G(\$) \cdot X(S) \quad \approx \therefore Y(S)=\frac{G(S)}{s^{2}}$
$\therefore \quad Y(t)=L^{-1}\left(\frac{G(s)}{s^{2}}\right)$
3.3.3 Parabdic Input Signal:

The mathematical representation of a parabolic input fund. timon is:

$$
x(t)=\left[\begin{array}{ll}
R . t^{2} & t \geqslant 0 \\
0 & t<0
\end{array}\right.
$$

$$
\underbrace{x(t)}_{t} \text { slop }=R t^{2}
$$

is :

$$
X(s)=\frac{2}{s^{3}} \quad x \quad Y(s)=\frac{2 G(s)}{s^{3}}
$$

For a unit parabolic input:

$$
x(t)=t^{2} \quad \text { oD the Laplace transform }
$$

$x(s)=\frac{2}{s^{3}} \nsim Y(s)$
$x \therefore \quad y(t)=L^{-1}\left(\frac{2 \cdot G(s)}{s^{3}}\right)$
3.3.4 Impulse Input Signal:

There is a jump at the time of application of impulse and the $x(t)$. It is the input applied instantaneously (for short duration of time) of very high amplitude as show in the figure. However, a stable system will return again to its equilibrium position:

$$
x(t)=\left[\begin{array}{ll}
R & 0 \leqslant t \leqslant T \\
0 & \text { elsewhere }
\end{array}\right.
$$

where;
R : pulse height
T : Small duration time
 tor a unit impulse signal; $X(S)=1$

$$
Y(S)=G(S) \cdot x(S)=G(S)
$$

$x \therefore f(t)=L^{-1}(G(s))$

- Respose of First - Order System.
σ Example: For the system with transfer function $G(S)=\frac{4}{s+4}$, find it's unit impulse response and unit stepresponse.
Solution:
*For unit impulse response; $x(s)=1$

$$
\begin{aligned}
& \therefore Y(S)=\frac{4}{S+4} * 1 \\
& \therefore y(H)=L^{-1}\left(\frac{4}{S+4}\right)=4 e^{-4 t}
\end{aligned}
$$

* For unit step response; $X(S)=\frac{1}{S}$

$$
Y(s)=G(s) \cdot \frac{1}{s}=\frac{4}{s(s+4)}=\frac{k_{1}}{s}+\frac{k_{2}}{s+4}
$$

$$
\begin{aligned}
& K_{1}=\lim _{s \rightarrow 0} \cdot s \cdot \frac{4}{S(S+4)}=1 \\
& K_{2}=\lim _{s \rightarrow-4}(s+4) \cdot \frac{4}{S(S+4)}=-1 \\
& Y(s)=\frac{1}{s}-\frac{1}{S+4} \\
& Y(t)=L^{-1}\left(\frac{1}{s}-\frac{1}{s+4}\right)=1-e^{-4 t}
\end{aligned}
$$

 at $t=\frac{1}{4} \nsupseteq y(H)=0.632$.
σ Example: In first-order control system, when input is a step function of 5 , the experimentally response is described by:

$$
J(t)=4 \cdot 5\left(1-e^{-12 t}\right)
$$

Determine the closed loop transfer function, relating output I to input r.
Solution:

$$
\begin{aligned}
r(t) & =5 ; \text { step function } \\
\therefore r(S) & =\frac{5}{s} \\
\therefore Y(S) & =r(S) \cdot G(S) \quad \text { (because } G(S)=\frac{Y(S)}{r(S)} \\
\approx y(t) & =L^{-1}\left(\frac{5 G(S)}{s}\right) \\
\because y(t) & =4.5\left(1-e^{-12 t}\right) \nsim 4.5\left(1-e^{-12 t}\right)=L^{-1}\left(\frac{5 G(S)}{s}\right)
\end{aligned}
$$

\therefore Transformation $\infty 4.5\left(\frac{1}{S}-\frac{1}{S+12}\right)=\frac{5 G(S)}{S}$

$$
\begin{aligned}
\therefore G(S) & =\frac{4.5 S}{5}\left(\frac{1}{S}-\frac{1}{S+12}\right)=\frac{4.5 S}{5}\left(\frac{(S+12)-S}{S(S+12)}\right) \\
& =0.9\left(\frac{12}{S+12}\right)=\frac{10.8}{S+12}
\end{aligned}
$$

- Response of Second - Order Systems.
σ Example: For the system with $G(S)=\frac{15 S}{S^{2}+8 S+15}$, Find it's res parse when

$$
x(t)=3 \text {. }
$$

Solution:

$$
\begin{aligned}
& \text { For } x(t)=3 \sim x(S)=\frac{3}{S} \\
& \therefore Y(S)=G(S) \cdot x(S)=\frac{15 S}{S^{2}+8 S+15} \cdot \frac{3}{S}=\frac{45}{(S+5)(S+3)} \\
& \therefore Y(S)=\frac{K_{1}}{S+5}+\frac{K_{2}}{S+3} \\
& K_{1}=\lim _{S \rightarrow-5}(S+5) \cdot \frac{45}{(S+5)(S+3)}=\frac{45}{-2}=-22.5 \\
& K_{2}=\lim _{S \rightarrow-3}(S+3) \cdot \frac{45}{(S+5)(S+3)}=\frac{45}{2}=22.5 \\
& \therefore Y(S)=\frac{-22.5}{(S+5)}+\frac{22.5}{(S+3)} \\
& \therefore y(t)=L^{-1}\left(\frac{-22.5}{(S+5)}+\frac{22.5}{(S+3)}\right)=-22.5 e^{-5 t}+22.5 e^{-3 t}
\end{aligned}
$$

- Example: For a unity feedbad system whose open-loop transfer funcion $G(S)=\frac{K}{S(S+a)}$. Determine the values of K and a so that the response to a unit-impulse has the form:

$$
c(t)=c_{1} e^{-t}+c_{2} e^{-4 t}
$$

evaluate c_{1} and C_{2} when all initial conditions are zero.
Solution:

$$
R(S)=1 \text {; impulse input }
$$

$$
\begin{aligned}
& \frac{C(S)}{R(S)}=\frac{k}{S^{2}+a s+k} \\
& \therefore C(t)=c_{1} \cdot e^{-t}+c_{2} \cdot e^{-4 t}
\end{aligned}
$$

$$
\Rightarrow C(S)=\frac{c_{1}}{(S+1)}+\frac{c_{2}}{(S+4)}
$$

thus, we can compare;

$$
\begin{aligned}
& S^{2}+a S+K=(S+1)(S+4) \\
\Rightarrow & K=4 \text { and } a=5 \\
\therefore & C(S)=\frac{4}{S^{2}+5 S+4}=\frac{4}{(S+1)(S+4)}=\frac{4}{(S+1)}+\frac{c_{2}}{(S+4)} \\
\therefore C= & \lim _{S \rightarrow-1}(S+1) \cdot \frac{4}{(S+1)(S+4)}=\frac{4}{3} \\
\therefore & C_{2}=\lim _{S \rightarrow-4}(S+4) \cdot \frac{4}{(S+1)(S+4)}=-\frac{4}{3} \\
\therefore C(S)= & \frac{4 / 3}{S+1}-\frac{4 / 3}{S+4} \Rightarrow C(t)=\frac{4}{3} e^{-t}-\frac{4}{3} e^{-4 t}
\end{aligned}
$$

3.3.5 S- Plane Representation.

It is a method for representing control system transfer functions in the complex plane. This representation is useful in understandingsystems performance and stability.

- Example: For the system have $G(S)=\frac{15}{S^{2}+8 S+15}$ use S-pane to show its stability.
Solution:
The characteristic equation of the system is:

\because the roots are in the lett, so the system is stable. (Key point)

Solution:
The characteristic equation is;

$$
\begin{aligned}
& S^{2}+2 S+5=0 \\
& (S+5)(S+3)=0
\end{aligned}
$$

$\Rightarrow \quad S_{1}=-5 \quad S_{2}=3$
\because there is one root in the right half, so the system is unstable.

3.3.6 The General Second Order Control Systems.

Consider a second-order differential equation;

$$
a \cdot \frac{d^{2} y}{d t^{2}}+b \cdot \frac{d y}{d t}+c \cdot y=e \cdot x(t)
$$

take Laplace transforms, with zero initial conditions:

$$
a \cdot s^{2} \cdot Y(S)+b \cdot s \cdot y(S)+c \cdot Y(S)=e \times(S)
$$

the transfer function is;

$$
G(S)=\frac{Y(S)}{x(S)}=\frac{e}{a s^{2}+b s+c}
$$

- $G(s)=\frac{e / c}{\frac{a}{c} s^{2}+\frac{b}{c} s+1}$

Which is writenas;

$$
G(S)=\frac{K}{\frac{1}{w_{n}^{2}} \cdot S^{2}+\frac{2 q}{w_{n}} S+1}
$$

Which can be normalized to give;

$$
\left|G(S)=\frac{k \cdot \omega_{n}^{2}}{S^{2}+2 \xi \omega_{n} \cdot S+\omega_{n}^{2}}\right|
$$

which is a standard form of transter function for a second order system; where;
$K \equiv$ Steady state gain constant
$\omega_{n} \equiv$ undamped natural frequency ($\mathrm{rad} / \mathrm{sec}$)
$\zeta \equiv$ damping ratio
$\omega_{d}=\omega_{n} \cdot \sqrt{1}-\zeta^{2}$ damped natural frequency when $0<\zeta<1$.
now, it is clear that the characteristic equation of the system is;

$$
S^{2}+2 \varepsilon w_{n} \cdot S+w_{n}^{2}=0
$$

the roots of this second order equation are;

$$
S_{1,2}=\frac{-2 \zeta \omega_{n} \mp \sqrt{ }\left(2 \zeta \omega_{n}\right)^{2}-4 \omega_{n}^{2}}{2}
$$

or

$$
S_{1}, S_{2}=-\zeta \cdot \omega_{n} \mp \omega_{n} \sqrt{\zeta^{2}-1}
$$

i) Over-damped transient response $\left(\zeta_{1}>1\right)$ \therefore the roots are;

$$
\begin{aligned}
& S_{1}=-\zeta \omega_{n}+\omega_{n} J \zeta^{2}-1 \\
& S_{2}=-\zeta \omega_{n}-\omega_{n} J \zeta^{2}-1
\end{aligned}
$$

ii) Critically damped transient response $(\xi=1)$ \therefore the roots are;

$$
S_{1}=S_{2}=-\omega_{n}
$$

iii) Un-damped transient response $(\xi<1)$ the roots are:

$$
\begin{aligned}
& S_{1}=-\zeta \omega_{n}+j \omega_{n} \sqrt{1}-\xi^{2} \\
& s_{2}=-\zeta \omega_{n}-j \omega_{n} \sqrt{1}-\zeta^{2}
\end{aligned}
$$

For a unit step function input of $x(s)=\frac{1}{\beta}$, the output response is;

$$
y(s)=G(s) \cdot x(s)
$$

$\Rightarrow \quad Y(S)=\frac{k \cdot \omega_{n}^{2}}{S\left(S^{2}+2 \zeta \omega_{n} S+\omega_{n}^{2}\right)}$
and for constant gain $K=1$ and undamped response $(\zeta<1)$, the output is;

$$
\begin{align*}
Y(S) & =\frac{\omega_{n}^{2}}{S\left(s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}\right)} \\
\therefore \mid y(t) & \left.=1 \mp \frac{1}{\sqrt{1-\zeta^{2}}} \cdot e^{-\zeta \omega_{n} t} \cdot \sin \left(\omega_{d} \cdot t+\theta\right) \right\rvert\, \tag{a}
\end{align*}
$$

where:

$$
\left|\begin{array}{l}
\theta=\tan ^{-1} \frac{-\sqrt{1-\varepsilon^{2}}}{-\zeta} \\
\omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}
\end{array}\right|
$$

when $\xi_{5}=1 \Rightarrow$

$$
y(t)=1-e^{-\omega_{n} \cdot t} \cdot\left(1+\omega_{n} t\right)
$$

* Note: Equation (a) can be writer in the form:

$$
J(t)=1-e^{-\varepsilon \omega_{n} \cdot t} \cdot\left(\cos \omega_{d} \cdot t+\frac{\varepsilon}{\sqrt{1-\varepsilon^{2}}} \cdot \sin \omega_{d} \cdot t\right)
$$

σ_{0} Example: A system with transfer function $G(S)=\frac{100}{S^{2}+10 S+100}$, find :-

1. ω_{n} and ζ for the system
2. Unit step response

Solution:-
System characterestic equation is:

$$
S^{2}+10 S+100=0
$$

which can be compared with;

$$
S^{2}+2 \varphi \omega_{n} S+\omega_{n}^{2}=0
$$

$$
\begin{aligned}
\therefore \omega_{n}^{2}=100 & \rtimes \omega_{n}=10 \\
\quad 2 \zeta \omega_{n}=10 \quad & \therefore 0 \because \omega_{n}=10 \quad \therefore \quad \zeta=0.5
\end{aligned}
$$

for unit step response where $\varepsilon=0.5<1$, therefore;

$$
\begin{aligned}
& J(t)=1 \mp \frac{1}{\sqrt{1-\varepsilon^{2}}} \cdot e^{-\varepsilon \omega_{n} \cdot t} \cdot \sin \left(\omega_{d} \cdot t+\theta\right) \\
& \omega_{d}=\omega_{n} \cdot \cdot \cdot 1-\zeta^{2}=8.66 \\
& \theta=\tan ^{-1} \frac{-\sqrt{1-\zeta^{2}}}{-\zeta}=60^{\circ} \\
& \therefore f(t)=1 \mp 1.154 e^{-5 t} \cdot \sin \left(8.66 t+60^{\circ}\right)
\end{aligned}
$$

3.4 Definitions of Transient Response Specification.

Frequently, the performance characteristics of a control system are specified in terms of the transient response to aunit - step input, since It is easy to generate and is sutticiently drastic. The transient response of a system to a unit - step input depends on the Initial conditions. It is commolly to use the Stondard Initial conditions that the system is at rest initially with output and all time derivatives thereof zero.

The transient response of a par practical control system often exhibits
damped oscillations before reaching steady state. In specifying the transient response characteristics of a control system to a unit. Step input, it is common to specify the following:

1. Delay time $\left(t_{d}\right)$: The delay time is the time required for the response to reach half the final value the very first time.
2. Rise time (tr): The rise time is the time required for the response to risefrom 10% to $90 \%, 5 \%$ to 95%, or 0% to 100%. of its final value. For underdamped second order systems, the 0% to 100% rise time is normally used. For overdamped systems, the 10% to 90% rise time is commonly used.
3. peak time $\left(t_{p}\right)$: The peak time is the time required for the response to reach the first peak of the overshoot.
Go. Maximum (percent) overshoot (M_{p}): The maximum overshoot is the maximum peak value of the response curve measured from unity. If the final steady-state value of the response differs from unity, then it is common to use he maxionum percent overshoot. It is defined by:

$$
\mid \text { Maximum percent overshoot } \left.=\frac{y\left(t_{p}\right)-J(\infty)}{y(\infty)} \times 100 \% \right\rvert\,
$$

So Setting time $(t s)$: The settling time is the time required for the response curve to reach and stay within a range about the final valwe of size specified by absolute percentoge of the final valwe (usually 2% or 5%). The settling time is related to the largest time constant of the contra system.

3.5 Second-Order Systems and Transient Response Specifications. In the following, we shall obtain the rise time, peak time, maximum overshoot, and settling time of the secand-order system given by the equation;

$$
\left|\frac{Y(S)}{x(S)}=\frac{w_{n}^{2}}{S^{2}+2 \zeta \omega_{n} \cdot S+w_{n}^{2}}\right|
$$

These values will be obtained in terms of ζ and ω_{n}. The system is assumed to be underdamped.

$$
\therefore\left|y(t)=1+\frac{e^{-\zeta \omega_{n} t}}{\sqrt{1-\varepsilon^{2}}} \sin \left(\omega_{d . t} t+\theta\right)\right|
$$

- For "Rise Time" $\left(t_{r}\right)$:

We obtain the rise time $(t r)$ by letting $y(t r)=1$

$$
\begin{aligned}
& \therefore y\left(t_{r}\right)=1=1+\frac{e^{-\zeta \omega_{n} \cdot t_{r}}}{\sqrt{1-\zeta^{2}}} \sin \left(\omega_{d \cdot} \cdot t_{r}+\theta\right) . \\
& \Rightarrow e^{-\zeta \omega_{n} \cdot t_{r}} \cdot \sin \left(\omega_{d} \cdot t_{r}+\theta\right)=0
\end{aligned}
$$

since $e^{-\zeta \omega_{n} . t r} \neq 0 \quad \therefore \quad \sin \left(\omega_{d} . \operatorname{tr}_{r}+\theta\right)=0$
ح) $\omega_{\text {d. }} \cdot t_{r}+\theta=n \pi$ where $n=1,2,3, \ldots$

$$
\therefore\left|t r=\frac{\pi-\theta}{\omega_{d}}\right|
$$

For "Peak Time" $\left(t_{p}\right)$:
Peak time (to) may be obtained by differentiatting $y(t)$ with resect to time and equal zero.

$$
\frac{d y(t)}{d t}=\frac{\omega_{n} \cdot e^{-\zeta \omega_{n} \cdot t}}{\sqrt{1}-\zeta^{2}} \sin \omega_{d} \cdot t_{p}
$$

now, let $\frac{d y(t)}{d t}=0$.
$\therefore \sin \omega_{d} \cdot t_{p}=0 \Rightarrow \omega_{d} \cdot t_{p}=n \pi \quad$ where $n=1,2,3, \ldots$

$$
\left.\therefore \quad t_{p}=\frac{n \pi}{w_{d}} \right\rvert\,
$$

the maximum value of $y(t)$ occurs when;

$$
\left|r_{p}=\frac{\pi}{\omega_{d}}\right|
$$

- For "Maximum overshoot" (Mp):

The maximum overshoot occurs at the peak time or at $r=r_{p}=\frac{\pi}{u_{d}}$. Assuming the final value of the output is unity, then "Mp "can be dorained from:

$$
\begin{aligned}
M_{p} & =J\left(t_{p}\right)-1 \\
& =1-\frac{1}{\sqrt{1-\zeta^{2}}} e^{-\zeta \omega_{n}\left(\frac{\pi}{\omega_{d}}\right)} \cdot \sin \left(\omega_{d} \cdot \frac{\pi}{\omega_{d}}+\tan ^{-1} \frac{\sqrt{1-\varepsilon^{2}}}{\zeta}\right)-1 \\
\Rightarrow \quad \mid M_{p} & =e^{-\pi\left(\zeta / \sqrt{ }-\zeta^{2}\right)}
\end{aligned}
$$

and the maximum percent overshoot is;

$$
\left|M_{p}=e^{-\pi\left(\zeta / \sqrt{1-\zeta^{2}}\right)} \times 100 \%\right|
$$

σ For "Settling Time" (r_{s}):
The settling time (ts) occurs When the equations of the enelope are evaluated with certain percentage (5%) and (2%) of its final value.

In the figure given here,

the curves $1 \pm\left(e^{-\zeta \omega_{n} \cdot t} \cdot / \sqrt{1}-\zeta^{2}\right)$ are the envelope curves of the transient response to a unit-Step input. The response curve $y(t)$ always remains within a pair of the envelope curves. As it can be seen, the time constant of these envelope carves is $1 / \zeta \omega_{n}$.

It have been found that the settling time reaches a minimum va. lue around $\xi=0.76$ for the 2% eriterion or $\xi=0.68$ for the 5% criterion. As well as, if the 2% criterion is used, (ts) is approximatelly tour times the time constant of the system. If the 5% criterion is used, $\left(r_{s}\right)$ is approximatelly three times the time constant. See the following:
tor 5% percentage of the final value of the upper envelope:

$$
y(t)=1+\frac{e^{-\zeta \omega_{n} \cdot t_{s}}}{\sqrt{1-\zeta^{2}}}=1.05
$$

$\therefore \therefore \omega_{n} . t s=-\frac{1}{\zeta} \cdot \ln \left(0.05 \sqrt{1-\zeta^{2}}\right)$
\therefore for a very small value of ζ, we get:

$$
\omega_{n} t_{s} \cong \frac{3}{\varepsilon} \rightarrow 0 t_{s}=\frac{3}{\zeta \omega_{n}} \text { for } 5 \% \text { criterion }
$$

$$
\omega_{n} t_{s}=\frac{4}{\zeta} \quad \infty t_{s}=\frac{\zeta}{\zeta \omega_{n}} \text { for } 2 \% \text { criterion }
$$

For Impulse response of second order systems, the in put is unity $x(S)=1$. The unit-impulse response is:

$$
J(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} \cdot s+\omega_{n}^{2}}
$$

\therefore the inverse Laplace transform of this equation when $\zeta<1$.

$$
y(t)=\frac{\omega_{n}}{\sqrt{1-\zeta^{2}}} e^{-\xi \omega_{n} \cdot t} \cdot \sin \left(\omega_{n} \sqrt{1-\zeta^{2}} \cdot t\right)
$$ $\omega_{n}=5 \mathrm{rad} / \mathrm{sec}$. Let us obtain the rise time, peak time, maximum overshoot and Settling time when the system is subjected to a unitstep input.

Solution:
From the given values of ξ and ω_{n}, we obtain $\omega_{d}=\omega_{n} \cdot \sqrt{ }-\zeta^{2}=4$

$$
\sigma=\zeta \cdot \omega_{n}=3
$$

Rise time $\left(\mathrm{H}_{\mathrm{r}}\right)$:

$$
\begin{array}{ll}
t_{r}=\frac{\pi-\theta}{\omega_{d}} \quad \text { but here } \theta \text { is given by } \theta=\tan ^{-1} \frac{\omega_{d}}{\sigma} \\
\pi-0.93 \quad \text { FD } \therefore \theta=\tan ^{-1} \frac{4}{3}=0.93 \mathrm{rad} .
\end{array}
$$

$\therefore \therefore \operatorname{tr}=\frac{\pi-0.93}{4}=0.55 \mathrm{sec}$
Peak time $(t p)$:

$$
t_{p}=\frac{\pi}{\omega_{d}}=\frac{\pi}{4}=0.785 \mathrm{sec}
$$

Maximum overshoot $\left(M_{p}\right)$:

$$
M_{p}=e^{-\left(\sigma / \omega_{d}\right) \pi}=e^{-(3 / 4) \pi}=0.095
$$

\therefore the maximum percent overshoot is therefore 9.5%

Settling time $\left(r_{s}\right)$:
for the 2% criterion $r_{s}=\frac{4}{0}=\frac{4}{3}=1.33 \mathrm{sec}$ for the 5% criterion $t s=\frac{3}{\sigma}=\frac{3}{3}=1 \mathrm{sec}$.

Example: Consider the servomechanism shown in the figure, determine the values of A and K sothat the maximum overshoot in unit. Step response is 25% and peak time is 2 sec .

$$
\begin{aligned}
& \text { Solution: } \\
& \because M p=100 e^{-\varepsilon \pi / \sqrt{~}-\zeta^{2}} \\
& 25=100 e^{-\zeta \pi / \sqrt{-~}}-\zeta^{2} \\
& \because \frac{\zeta \pi}{\sqrt{1-\zeta^{2}}}=1.39 \quad \geqslant \zeta=0.4
\end{aligned}
$$

Also, $t_{p}=\frac{\pi}{\omega_{d}} \Rightarrow 2=\frac{\pi}{\omega_{d}} \Rightarrow \therefore \omega_{d}=1.57 \mathrm{rad} / \mathrm{sec}$.

$$
\therefore \omega_{d}=\omega_{n} \sqrt{1}-\xi^{2} \Rightarrow \omega_{n}=1.713 \mathrm{rad} / \mathrm{sec}
$$

We can get from the block diagram;

$$
\frac{Y(S)}{X(S)}=\frac{K}{S^{2}+K A S+K} \quad \text { comparing with } \frac{Y(S)}{X(S)}=\frac{\omega_{n}^{2}}{S^{2}+2 \zeta \omega_{n} S+w_{n}^{2}}
$$

$$
\therefore \therefore w_{n}^{2}=k \quad \rtimes \quad k=(1.713)^{2}=2.9
$$

$$
2 \zeta \omega_{n}=K A ת D A=\frac{2 \zeta \omega_{n}}{k}=\frac{2 \times 0.4 \times 1.71}{2.9}=0.47 .
$$

Example: A mechanic cal vibratory system with applied force of $2 N$ is used. The mass oscilates as shown. Determine m, c and K of the system from the response curve given.
Solution:

$$
\sum F=m \ddot{x}
$$

$\Rightarrow F-K x-k \dot{x}=m \ddot{x}$
$\therefore m \ddot{x}+c \dot{x}+K x=F$

$$
\left(m D^{2}+C D+K\right) x=F
$$

Laplace transform of this equation;

$$
\left(m s^{2}+c s+k\right) X(s)=F(s)
$$

(x) $\frac{X(S)}{F(S)}=\frac{1}{m S^{2}+c S+k}$

$$
\because F=2 N \nsim F(S)=\frac{2}{S}
$$

$$
\therefore \quad x(S)=\frac{2}{S\left(m S^{2}+c S+k\right)}
$$

the stead y state value of x is;

$$
\begin{aligned}
& X(\infty)=\lim _{S \rightarrow 0} S \cdot X(S)=\frac{2}{K}=0.1 \Rightarrow K=20 \mathrm{~N} / \mathrm{m} \\
& M_{p}=\frac{0.0095}{0.1}=9.5 \% \\
& >0.5=e^{-\pi r / \sqrt{2}-\zeta^{2}} \Rightarrow{ }^{\circ}=0.6
\end{aligned}
$$

$\because r_{p}=2 \mathrm{sec} \Rightarrow \omega_{n}=1.96 \mathrm{rad} / \mathrm{sec}$.
however, $\omega_{n}^{2}=\mathrm{k} / \mathrm{m}$ क $m=5.2 \mathrm{~kg}$.

$$
2 \xi \omega_{n}=\frac{c}{m} \quad \infty c=12.2 \mathrm{~N} / \mathrm{m} \cdot \mathrm{sec} \text {. }
$$

4.1 Steady -State Errors in Control Systems.

Error in a control system can be attributed to many tadors. changes in the reference input will cause unavaidable errors during transient periods and may also cause steody-state errors. Imperfictions in the system components, such as static friction, backlash, and amplifier drift, as well as aging or deterioration, will cause errors at steady state.

Any physical control system inherently suffers steady-state er roo in response to certain types of inputs. A system may have no st-eady-state error to a step input, but the same system may extibit nonzero steody-state error to a ramp input. The only way we may be able to eliminate this error is to modify the system structure.
4.2 Classification of Control Systems.

Control systems may be Classified according to their ability to follow step inputs, ramp inputs, parabolic input, and so on. This is a reasonable classification scheme, because actual inputs may frequently be considered combinations of such inputs. The magnitudes of the steody-state errors due to these individual inputs are Indicative of the goodness of the system.

We can establish the type of control system by refering to the form of $G(\$) . H(\$)$. The bop - system may be written as:

$$
\begin{equation*}
G(S) \cdot H(S)=\frac{K\left(1+T_{1} S\right)\left(1+T_{2} S\right) \cdots\left(1+T_{m} S\right)}{S^{i}\left(1+T_{a} S\right)\left(1+T_{b} S\right) \ldots\left(1+T_{n} S\right)} \tag{1}
\end{equation*}
$$

where: K and T are constant.

It involves the term S^{i} in the denominator, representing a pole of multiplicity (i) at the origin. The present classification schere is based on the number of Integrations Indicated by the openloop transfer function. A system is called type 0, type 1, type 2,.. .. if $N=0, N=1, N=2, \ldots$, respectively. As the type number is increased, accuracy is improved; however, increasing the type number aggravates the stability problem. A compromise between steadystate accuracy and relative stability is always necessary.
4.3 Steady - State Errors.

It is a measure of the control system accuracy in track ing a command input or in rejecting a disturbance in the form of a load change. The steady-state errors of control systems depend on the input and the type of the system. The steady-state errors is defined from closed loop system as:

$$
\frac{y(S)}{x(S)}=\frac{G(S)}{1+G(S) \cdot H(S)}
$$

the transfer function between the error
 signal $e(t)$ and the input signal $x(t)$ is:

$$
\frac{E(S)}{X(S)}=1-\frac{Y(S) \cdot H(S)}{X(S)}=\frac{1}{1+G(S) \cdot H(S)}
$$

where the error $e(t)$ is the difference between the input signals. The final value theorm provides a convenient way to find the steady-state performance of a stable system. Since $E(S)$ is:

$$
E(S)=\frac{1}{1+G(S) \cdot H(S)} \cdot X^{\prime}(S)
$$

the steady -state error is:

$$
e_{s s}=\lim _{t \rightarrow \infty} e(t)=\lim _{s \rightarrow 0} . S . E(\$)=\lim _{S \rightarrow 0} \frac{S X(\$)}{1+G(\$) H(\$)}
$$

where:
$e_{s s} \equiv$ steady_state errors
$e(t) \equiv$ error signal response
4.4 Classification of Steady. State Errors Depending on Input Signals.
4.4.1 Stead-State Error Due to a Step Input.

If the reference input to the control system is a step input of magnitude (R), the laplace transform $X(S)=\frac{R}{S}$

$$
e s s=e(\infty)=\lim _{t \rightarrow \infty} e(t)=\lim _{s \rightarrow \infty} S . E(s)
$$

$$
E(S)=\frac{X(S)}{1+G(S) H(S)}
$$

$$
X(S)=\frac{R}{S} \text { for step input }
$$

$$
\begin{aligned}
e_{s s} & =\lim _{S \rightarrow 0} \cdot S \cdot \frac{R / S}{1+G(S) H(S)} \\
& =\lim _{S \rightarrow 0} \frac{R}{1+G(S) H(S)}
\end{aligned}
$$

¿ for unit step input:

$$
e_{s s}=\lim _{s \rightarrow 0} \frac{1}{1+G(s) H(s)} \quad x e_{s s}=\frac{1}{1+K_{p}}
$$

where $K p=\lim _{\beta \rightarrow 0} G(\beta) H(\beta)$
K_{p} is called the positional error constant. From the figure, the output response of two types the tirsthas a zero steady state error, and the second has a finite steady state error $e_{2}(\infty)$. For control systems, we have:
a) Type 0 system:

For a type 0 we have $i=0$, substituting in equation (1) and $\operatorname{Lim}_{S \rightarrow 0} G(S) H(S)=K$, then;

$$
e_{s s}=\frac{R}{1+K_{p}}=\text { constant }
$$

Type 0
b) Type 1 system:

For a type 1 we have $i=1$, substituting in equation (1) and

$$
\begin{aligned}
\operatorname{Lim}_{S \rightarrow 0} G(S) \cdot H(S) & =\infty \\
e_{S S} & =\frac{R}{1+\infty}=0
\end{aligned}
$$

c) Type 2 System:

For a type 2 we have $i=2$, substituting in equation (1) and

$$
\operatorname{Lim}_{S \rightarrow 0} G(S) H(S)=\infty ;
$$

$$
e_{s s}=0
$$

4.4.2 Steady_State Errors Due to a Ramp Input. If the input signal to a contra system is $X(H)=$ RAt, the laplace transform is,

$$
x(S)=\frac{R}{S^{2}}
$$

c) Type 2 system:

For a type 2 we have $i=2$, substituting in equation (1) we get $G(S) H(S)=\frac{R}{s^{2}\left(1+\frac{k}{s^{2}}\right)}$

$$
\overbrace{0} \stackrel{K}{v}_{\underline{e}}=\lim _{S \rightarrow 0} \cdot S \cdot G(S)\left(H(S)=\lim _{S \rightarrow 0} \frac{R}{S\left(1+\frac{K}{S^{2}}\right)}=e_{S S}\right.
$$

$\Rightarrow e_{s s}=0$
4.4.3. Steady-State Error Due to a Parabolic Input. If the input $X(H)=\frac{1}{2} R \cdot t^{2}$, the laplace transform:

$$
\begin{aligned}
x(S)^{\prime} & =\frac{R}{S^{3}} \\
e_{s s} & =\lim _{S \rightarrow 0} \cdot S \cdot \frac{R \cdot / S^{3}}{1+G(S) H(S)} \\
& =\lim _{S \rightarrow \infty} \cdot \frac{R}{S^{2} G(S) H(S)} \\
\Rightarrow e_{s s} & =\frac{R}{K_{a}}
\end{aligned}
$$

where $K_{a}=\lim _{S \rightarrow 0} S^{2} \cdot G(S) H(S) \equiv$ Parabolic error constant.
a) Type 0 system:

For a type 0 we have $i=1$, sub. in equation (1) we get;

$$
\begin{aligned}
& G(S) H(S)=K \\
& \because e_{s s}=\frac{R}{K_{a}}
\end{aligned}
$$

Type 0 and 1
and however, $K a=\lim _{s \rightarrow 0} S^{2} \cdot G(S) H(S)$

$$
\Rightarrow \quad e_{s s}=\infty
$$

$$
\begin{aligned}
e_{s s} & =\lim _{S \rightarrow 0} \cdot S \cdot \frac{R / S^{2}}{1+G(S) H(S)} \\
& =\lim _{S \rightarrow 0} \cdot \frac{R}{S+S G(S) H(S)} \\
& =\frac{R}{\lim _{S \rightarrow 0} \cdot S G(S) H(S)} \\
D e_{s S} & =\frac{R}{K}
\end{aligned}
$$

where $K_{v}=\lim _{S \rightarrow 0} S \cdot G(S) \cdot H(S) \equiv$ ramp error constant.
a) Type 0 . System:

For a type 0 we have $i=0$, and substituting in equation (i) We obtain;

$$
\begin{aligned}
& G(s) \cdot H(s)=k \\
\because & e_{s s}=\frac{R}{K_{v}}
\end{aligned}
$$

and however, $K U=\lim _{S \rightarrow \infty} . S \cdot K=0$
$\therefore \therefore e_{s S}=\frac{R}{0}=\infty$

Type o
b) Type 1 system:

For a type 1 we have $i=1$, and substituting in equation (1) we get;

$$
\begin{gathered}
G(S) \cdot H(S)=1+\frac{K}{S} \\
\rightarrow K_{v}=\lim _{S \rightarrow 0} S \cdot\left(1+\frac{K}{S}\right) \\
\rightarrow e_{s s}=\frac{R}{K_{v}}=\text { constant }
\end{gathered}
$$

Type 1
b) Type 1 system:

For a type 1 we have $i=1$, and sub. in equation (1) we get;

$$
G(S) H(S)=1+\frac{k}{S}
$$

\rightarrow ○ Uss $^{\prime}=\infty$

Type 2
c) Type 2 system:

For a type 2 we have $i=2$, and sub. in equation (1) we get;

$$
e_{s s}=\frac{R}{K_{a}}=\text { constant. }
$$

(23) Summary of the Steady -State Error due to step, ramp, and parabolic Inputs.

Type of System (i)	K_{p}	K_{u}	K_{a}	step input $e_{s s}=\frac{R}{1+K_{p}}$	Rampinput $e_{s s}=\frac{R}{K_{u}}$	Parabolic input $e_{s s}=\frac{R}{K_{a}}$
0	k	0	0	$e_{s s}=\frac{R}{1+K}$	$e_{s s}=\infty$	$e_{s s}=\infty$
1	k	0	$e_{s s}=0$	$e_{s s}=\frac{R}{K}$	$e_{s s}=\infty$	
2	∞	$e_{s s}=0$	$e_{s s}=0$	$e_{s s}=\frac{R}{K}$		

σ Example: For the system shown, find the steady-state error for unit step, unit ramp and unit parabolic inputs.
Solution:

$$
G(S) \cdot H(S)=\frac{2}{S(S+5)}
$$

So the system is tram type 1
 $\rightarrow \therefore K_{p}=\infty \quad \therefore$ ess=0

$$
\begin{aligned}
k_{v} & =k=\lim _{S \rightarrow 0} \cdot s \cdot \frac{2}{S(S+5)}=\frac{2}{5} \\
\therefore e_{s s} & =\frac{1}{k_{v}}=\frac{5}{2} \quad(\text { constant }) \\
k_{a} & =0 \quad \rightarrow \quad e_{s s}=\infty
\end{aligned}
$$

σ Example: The control system represented by the shown figure, has a unit-ramp input. Obtain the value of (K) so that the steddy-state error can be eliminated.
Solution:
For unit ramp input;

$$
\begin{aligned}
& \text { For unit ramp input, } \\
& \begin{array}{l}
R(S)=\frac{1}{S^{2}} \\
\frac{C(S)}{R(S)}=\frac{\omega_{n}^{2}(1+k S)}{S^{2}+2 \xi \omega_{n} S+\omega_{n}^{2}} \\
C(S)=\frac{\omega_{n}^{2}(1+k S)}{S^{2}\left(S^{2}+2 \xi \omega_{n} S+\omega_{n}^{2}\right)} \\
\therefore E(S)=R(S)-C(S) \\
\therefore E(S)
\end{array} \\
& =\frac{1}{S^{2}}-\frac{\omega_{n}^{2}}{S^{2}\left(S_{n}^{2}+2 \xi \omega_{n} S\right.}
\end{aligned}
$$

$$
\begin{aligned}
\therefore e_{S S} & =\lim _{S \rightarrow 0} \cdot S \cdot E(S) \\
\therefore e_{S S} & =\lim _{S \rightarrow 0} \cdot S \cdot\left[\frac{S\left(S+2 \xi \omega_{n}-k \omega_{n}^{2}\right)}{S^{2}\left(S^{2}+2 \xi \omega_{n} S+\omega_{n}^{2}\right)}\right] \\
& =\lim _{S \rightarrow 0}\left[\frac{S+2 \xi \omega_{n}-k \omega_{n}^{2}}{S^{2}+2 \xi \omega_{n} S+\omega_{n}^{2}}\right]
\end{aligned}
$$

$$
x 00 e_{s s}=\frac{2 \zeta \omega_{n}-k \omega_{n}^{2}}{\omega_{n}^{2}}
$$

In order to eliminate the steady-state error, let $e_{s s}=0$

$$
\rightarrow 0 \frac{2 \varepsilon \omega_{n}-k \omega_{n}^{2}}{\omega_{n}^{2}}=0 \quad \rightarrow 0 \circ 0 k=\frac{2 \varepsilon_{n}}{\omega_{n}}
$$

Sol Routh. Hurwitz Criterion.
The Routh.Hurwitz criterion is an algebraic method that Indicates whether or not all roots of the characteristic equatIon have negative real parts without actually finding the roots. In this case the stability condition is not satisfied, the method also in-: dicate the number of roots that lie in the right half of the Splane and on the imaginary axis, that is the number of roots that have positive and zero real parts.

The technique was developed Independently Routh In the 1890 and for this reason, it's also called the Routh-criterion. We have soon earlier that the characteristic equation of a closed_loop control system is given by:

$$
\begin{equation*}
a_{n} S^{n}+a_{n-1} S^{n-1}+\cdots+a_{1} S+a_{0}=0 \tag{1}
\end{equation*}
$$

where, n is the order of the system, and a_{i} are constant cefficients. The necessary and sufficient condition that all roots of equation (1) lie in the left half of S-plane, so that all the coefficients of the equation be positive and dill terms in the first colimn of the array have positive signs.

The first step in the simplification of Pouth-Criterion is to arrange the polynomial coefficients into two rows. The Hers raid consist of the first, third, fifth, coefficients, and the secand row consists of the second, fourth, sixth,... coefficients as shown in the following tabulation:

$$
\left.\begin{array}{llllll}
a_{0} & a_{2} & a_{4} & a_{6} & a_{8} & \cdots \tag{2}\\
a_{1} & a_{3} & a_{5} & a_{7} & a_{9} & \cdots
\end{array}\right\}
$$

The next step is to form the following array of numbers by the indicated operations (the example shown is for a sixth-order sy-stem):-

$$
a_{0} S^{6}+a_{1} S^{5}+a_{2} S^{4}+a_{3} S^{3}+a_{4} S^{2}+a_{5} S+a_{6}=0
$$

The last step is to investigate the signs of the numbers in the first column of the tabulation. The roots of the polynomials are all in the left half of the S-pane if all the elements of the first colun of the Routh tabulation are of the same sign. If there are changes of signs in the cements of the first column, the number of sign charges indicates the number of roots with positive real parts.
\checkmark Example: Con rider the equation $2 S^{4}+S^{3}+3 S^{2}+S S+10=0$. Investigate the stability of the control system?

Solution:

S^{4}	2	3	10
S^{3}	1	5	0
S^{2}	$\frac{(1 \times 3)-(2 \times 5)}{1}=-7$	10	0
S^{\prime}	$\frac{(-7 \times 5)-(1 \times b)}{-7}=\frac{45}{7}$	0	0
S^{0}	10		

Since there are two changes in sign in the first column, the eqnation has two roots in right hand half S. plane, such that system is unstable.
σ Example: Consider the equation $(s-2)(s+1)(s-3)=0$, which has two positive real parts, can be illustrated in Routh-criterion as:

Solution:

$$
\begin{aligned}
& (S-2)(S+1)(S-3)=S^{3}-4 S^{2}+s+6=0 \\
& S^{3} \left\lvert\, \begin{array}{cc}
1 & 1 \\
s^{2} & -4 \\
S^{\prime} & \frac{(-4 \times 1)-(6 \times 1)}{-4}=2.5 \\
\frac{(2.5 \times 6)-(4 \times 0)}{2.5}=6 & 0
\end{array}\right.
\end{aligned}
$$

Since there are two sign changes in the first column, means there are two roots in riant half of S. plane which agree with the first. equation.
5.2 Special Cases

The two illustrative example given above are designed so that the Routh-criterion can be carried out without any complication. However, de pending upon the equation to be tested, the following ditticalties may occur occasionally when carring out the Routh test:

1) The first element in any one row of the Routh tabulation is zero, but other elements are not.
2) The elements in one row of the Routh tabulation are all zero.
5.2.1 Case 1:

If a zero appears in the first position of a row, the dement in the next row will all become infinite. We replace the zero e lement in the Routh_tabulation by an arbitrary small positive number (ϵ) and complete the array.

- Example: Consider the equation $S^{3}-3 S+2=0$

Solution:

S^{3}	1	-3
S^{2}	0	2
S^{1}	∞	

Because of zero in the first element of the second row, the first element of the third row is infinite. To correct this stat situation, we may replace the zero element in the second row of the Routs tabulation by (E)-
then we have:

S^{3}	1
S^{2}	ϵ
S^{1}	$\frac{-3}{\epsilon-2}$
S^{0}	2

Since (ϵ) is a small positive number, so there are two changes in sign of the elements of the first column. Thus, the system isman unstable.

Of Example: Consider the equation $S^{5}+2 S^{4}+2 S^{3}+4 S^{2}+6 S+8=0$
Solution:

$$
\begin{array}{l|lll}
S^{5} & 1 & 2 & 6 \\
S^{4} & 2 & 4 & 8 \\
S^{3} & \phi^{6} & 2 & 0 \\
S^{2} & C_{1} & 8 & 0 \\
S^{1} & d_{1} & 0 & 0 \\
S^{0} & 8 & &
\end{array}
$$

The zero number in the first column is replaced by \in and we obtain?

$$
\begin{aligned}
& G=\frac{4 \epsilon-4}{\epsilon} \\
& d_{1}=\frac{2 G-8 \epsilon}{G}=\frac{8 \epsilon-8-8 \epsilon^{2}}{4 \epsilon-4}
\end{aligned}
$$

since ϵ is a small positive number, it follows that; $C_{1}<0$ and $d_{1} \rightarrow 2$ as $\in \rightarrow 0$. As a result, there are two changes

5.2.2 Case 2 :

There is zero in the first column and all other elements of that row are zero. It indicates that one or more of the following conditions may exist:

1) Pairs of real roots with opposite signs.
2) Pairs of imaginary roots.
3) Pairs of complex -conjugate roots forming symmetry about the origin of the S-plane.

The equation that is formed by using the coefficients of the rev just above the row of is called the auxiliary equation. The order of the auxilliary equation is always even, indicating the number of the root pairs that are equal in magnitude but opposite in sign. The auxilliary equation with second order refers to tub equal and opposite roots. All these roots of equal magnitude can be obtained by solving the auxillary equation. When a row of zeros appears in the Routh tabulation again the test breaks down.

* * Method (1): The test may be carried on by performing. the following remedies:

1. Take the derivative of the auxilliary equation with respeck to S.
2. Replace the row of zeros with the coefficients of the resultant equation obtained by taking the derivative of the auxiliary equation.
3. Carry on the Routh test in the usual maser with the newly formed tabulation.

Example: Consider the equation $S^{4}+S^{3}-3 S^{2}-S+2=0$.
Solution:

S^{4}	1	-3	0
S^{3}	1	-1	0
S^{2}	-2	2	0
S^{1}	0	0	0
S^{0}			

since the S^{\prime} row contains all zeros, we form the auxiliary equation using the coefficients contained in the S^{2} row. Thus the aumiliary equation is Written as:

$$
A(S)=-2 S^{2}+2=0
$$

take the derivative of $A(S)$ with respect to S to get;

$$
\frac{d A(S)}{d S}=\bar{A}(S)=-4 S
$$

now the row of zeros in the Routh tabulation is replaced by the coefficlents of $\overline{\mathrm{A}}(S)$ and the new tabulation is:

s^{4}	1	-3	2
s^{3}	1	-1	0
s^{2}	-2	2	0
s^{1}	-4	0	
s^{0}	2		

and the system is unstable.

* 当 Method (2):

By dividing the characteristic equation by the auxillinary equation to obtain the reduced-order polynominal.
$\sigma^{\text {Example: Consider the equation : }}$

$$
s^{6}+6 s^{5}+10 s^{4}+12 s^{3}+13 s^{2}-18 s-24=0
$$

Solution:

S^{6}	1	10	13	-24
S^{5}	6	12	-18	0
S^{4}	8	16	-24	0
S^{3}	0	0	0	0
S^{2}				

the auxiliary equation $A(\$)$ is obtained from the coefficients of the preceding row as follows:

$$
\begin{aligned}
A(S) & =8 S^{4}+16 S^{2}-24 \\
& =8\left(S^{4}+2 S^{2}-3\right) \\
& =8\left(S^{2}-1\right)\left(S^{2}+3\right)
\end{aligned}
$$

dividing the polynomial by the known factor $\left(A(S)=\hat{S}^{4}+2 S^{2}-3\right)$ yields:

Thus, the original characteristic equation may be written in the form:-

$$
\begin{aligned}
& S^{6}+6 S^{5}+10 S^{4}+12 S^{3}+13 S^{2}-18 S-24=0 \\
& \left(S^{4}+2 S^{2}-3\right)\left(S^{2}+6 S+8\right)=0 \\
& \left(S^{2}-1\right)\left(S^{2}+3\right)(S+2)(S+4)=0
\end{aligned}
$$

therefore, the roots are:

$$
S_{1,2}=\mp 1 \quad S_{3 / 4}=\mp \sqrt{3} j \quad S_{5}=-2 \quad S_{6}=-4
$$

So, the system is unstable.
σ Example: The characteristic equation for certain teed-back control system is given below. Determine the range of (k) that correspond to a stable system.

$$
S^{3}+1040 S^{2}+48500 S+\left(4 \times 10^{5}\right) K=0
$$

Sdution:

S^{3}	1	48500
S^{2}	1040	$4 \times 10^{5} \mathrm{~K}$
S^{1}	$\frac{504400000-4 \times 10^{5} \mathrm{~K}}{1040}$	0
S^{ρ}	$4 \times 10^{5} \mathrm{~K}$	

for this system to be stable, all the coefficients in the first colum of the Routh tabulation must have the some sign. This lead to the following condition:

$$
\frac{5044 \times 10^{4}-4 \times 10^{5} k}{1040}>0 \quad \Rightarrow K<126.1
$$

or

$$
4 \times 10^{5} k>0 \quad \text { os } \quad k>0
$$

As a result, the condition of asymptotic stability of the overall system is:

$$
0<k<126.1
$$

σ Example: Consider the equation: $S^{3}+3 K S^{2}+(K+2) S+4=0$. Delermine the range of K, so that the system is stable.
Solution:

S^{3}	1	$K+2$
S^{2}	$3 K$	4
S^{1}	$\frac{3 K(K+2)-4}{3 K}$	0
S^{0}	4	

from the S^{2} row $>03>0$:o $K>0$
from the S^{\prime} row $r>\frac{3 K(K+2)-4}{3 K}>0 \rightarrow 0 K^{2}+6 K-470$
$\therefore K>-2.528$ or $k>0.528$
for the closed-loop system to be stable k must satisfy,

$$
k>0.528
$$

σ Example: Consider the equation: $S^{3}+(K+0.5) S^{2}+5 K S+50=0$
Solution:

$$
\begin{array}{l|ll}
s^{3} & 1 & s k \\
s^{2} & (k+0.5) & s 0
\end{array}
$$

$$
\begin{array}{c|c}
s^{\prime} & \frac{5 k^{2}+2.5 k-50}{k+0.5} \\
s^{0} & 50
\end{array}
$$

$$
\begin{array}{ll}
k+0.5>0 & \quad \text { o } \\
5 k^{2}+2.5 k-50>0
\end{array} \quad \rightarrow 0.5 \quad k>\frac{-2.5+\sqrt{2} 2.5^{2}+(4 \times 5 \times 50)}{2 \times 5}
$$

$$
\text { o } k>-3.42 \text { or } k>2.92
$$

So, $K>2.92$ for shade system.

Example: The open -loop transfer function of a unity feedback system is given by:

$$
G(S)=\frac{K}{S(S+3)\left(S^{2}+S+1\right)}
$$

Determine the values of k that will cause sustained osc. illation in the closed loop system. Also, find oscillation trequang
Solution:
The characteristic equation is:

$$
1+G(S) H(S)=1+\frac{k}{S(S+3)\left(S^{2}+S+1\right)}=0
$$

or

$$
\begin{aligned}
& S(S+3)\left(S^{2}+S+1\right)+K=0 \\
& S^{4}+4 S^{3}+4 S^{2}+3 S+K=0
\end{aligned}
$$

The condition for system stability is:

$$
\begin{aligned}
& k>0 \\
& \frac{39}{4}-4 k>0 \quad \text { } \quad ~
\end{aligned} \quad k<\frac{39}{16}
$$

therefore the stability $\rightarrow D \frac{39}{16}>K>0$
when $k=\frac{39}{16}$ there will be a zero at the first entry in the tourth row. This will indicate l preeence of symmetrical roots.
$\therefore K=\frac{39}{16}$ will cause'sustaired oscillations, the auxiliary equ.

$$
\frac{13}{4} S^{2}+\frac{39}{16}=0 \quad \approx S=\mp 10.75 j ; \text { frequency } \omega=0.86
$$

6.1 Introduction to Root-Locus Method.

The basic characterstic of the transient response of a cbsed-loop system is closely related to the location of the closed-loop poles. If the system has a variable bop gain, then the location of the cosed-loop poles depends on the value of the loop gain chosen. It is important, therefore, that the designer kn. ow haw the closed_ loop poles move in the S plane as the bop gain is varied.

The closed -loop poles are the rats of the characteristiceqnation. A simple method for finding the roots of the characteristic equation has been devebped by W.R. Evans ard used extensively in control engineering. This method, called the "root-locus method is one in which the roots of the characteristic equation are poted for all values of a system parameter. The roots corresponding to a particular value of this parameter can then be located an the resulting graph.

For the negative feedback system shown in the following fig. , the transfer function is

$$
\frac{C(S)}{R(S)}=\frac{G(S)}{1+G(S) H(S)}
$$

the characteristic equation is

$$
1+G(S) H(S)=0 \text { or } G(S) H(S)=-1
$$

this equation can be split into tho equations by equating the angles and magnitudes of both sides, respectively, to obtain the following:

Angle condition

$$
\angle G(S) H(S)= \pm 180(2 k+1) \quad K=0,1,2, \ldots
$$

Magnitude condition:

$$
|G(S) H(S)|=1
$$

The values of S that fulfill both the angle and magnitude coneditions are the roots of the characteristic equation, or the cb sec loop poles. A locus of the points in the complex plane satisfying the angle condition alone is the root locus. The rcots of the characteristic equation (the closed-loop poles) corresponding to a given value of the gain can be determined from the magnitude condition.

In many cases, $G(S) H(S)$ involves a gain parameter k, and characteristic equation may be written as

$$
1+\frac{K\left(S+Z_{1}\right)\left(S+Z_{2}\right) \cdots\left(S+Z_{m}\right)}{\left(S+P_{1}\right)\left(S+P_{2}\right) \cdots\left(S+P_{n}\right)}=0
$$

or

$$
\left(S+P_{1}\right)\left(S+P_{2}\right) \cdots\left(S+P_{n}\right)+k\left(S+Z_{1}\right)\left(S+Z_{2}\right) \cdots\left(S+Z_{n}\right)=0
$$

Then the root loci for the system are the loci of the closedloop poles as the gain k is varied from zes to infinity.

Note that to begin sketching the root loci of a system bey the root-locus method we must know the location of the poles and zeros of $G(s) H(s)$. Remember that the angles of the camplex quantities originating from the open-loop poles and open_ loop zeros to the test point S are measured in the caviterclockwise direction. For example, if $G(S) H(S)$ is given by

$$
G(S) H(S)=\frac{K\left(S+Z_{1}\right)}{\left(S+P_{1}\right)\left(S+P_{2}\right)\left(S+P_{3}\right)\left(S+P_{4}\right)}
$$

Where $-P_{2}$ and $-P_{3}$ are complexconjugate poles, then the angle of $G(s) H(s)$ is

$$
\angle G(s) H(s)=\Phi_{1}-\theta_{1}-\theta_{2}-\theta_{3}-\theta_{4}
$$

where $\phi_{1}, \theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}$ are measured counterclockwise as
 shown in the figure.

OR. the angle condition can be Written as;

$$
\nless\left(S+Z_{1}\right)-\Varangle\left(S+P_{1}\right)-\left(S+P_{2}\right)-\Varangle\left(S+P_{3}\right)-\varangle\left(S+P_{4}\right)=\mp i \pi
$$

the magnitude of $G(\$) H(S)$ for this system

$$
|G(S) H(S)|=\frac{K B_{1}}{A_{1} A_{2} A_{3} A_{4}}
$$

where $A_{1}, A_{2}, A_{3}, A_{4}$ and B_{1} are the magnitude of the complex quaentities $\left(S+P_{1}\right),\left(S+P_{2}\right),\left(S+P_{3}\right),\left(S+P_{4}\right)$ and $\left(S+Z_{1}\right)$ respectively.

OR the magnitude condition can be written as

$$
\frac{\left|S+z_{1}\right|}{\left|S+P_{1}\right|\left|S+P_{2}\right|\left|S+P_{3}\right|\left|S+P_{4}\right|}=\frac{1}{|K|}=\frac{1}{K}
$$

(7) The root locus method was originally devebped for determining the loci of the roots of the characteristic equation of the single -input, single-out put control system ask" varied from zero to infinity.

Consider the control system represented by the figure:
The characteristic equation for the shown system is:

$$
S^{2}+4 S+K=0
$$

the roots of this equation are:

$$
r_{1,2}=-2 \mp \sqrt{4}-k
$$

these roots can be Written as:

$$
\begin{array}{ll}
r_{1,2}=-2 \mp \sqrt{4}-k & k<4 \\
r_{1,2}=-2 & k=4 \\
r_{1,2}=-2 \mp j \sqrt{k-4} & k>4
\end{array}
$$

When

$$
\begin{array}{lll}
k=0 & >0 & r_{1}=0 \quad r_{2}=-4 \\
k=4 & >0 & r_{1}=r_{2}=-2 \\
k=16 & \rightarrow 0 & r_{1}=-2+j \sqrt{12}
\end{array}
$$

such that a plot of the roots of the characteristic equation for each value of " k " varied from o to ∞ is a root-locus pot as shown.
6.2 The Root Locus Procedure.

The root - locus is constructed by using certain rules that are now developed in the following. From the general form of the loop of the transfer function:

$$
\begin{equation*}
G(S) H(S)=\frac{K\left(S+Z_{1}\right)\left(S+Z_{2}\right) \cdots\left(S+Z_{m}\right)}{\left(S+P_{1}\right)\left(S+P_{2}\right) \cdots\left(S+P_{n}\right)}=-1 \tag{1}
\end{equation*}
$$

there are polynomials in S of order m and n. It is assumed that $n \geqslant m$ and the values:
$-z_{1},-z_{2}, \ldots,-z_{m}$ are the zeros.
and
$-P_{1},-P_{2}, \ldots,-P_{n}$ are the poles.

We are interested in drawing the loci of the roots of the characteristic equation given in equation (1) as "K" varies from zero, to infinity.

Rule 1: Number of loci
The number of branches of the root loci is equal to the nu. mber of the roots given by the order of the characteristic equation. Since it is assumed that $n \geqslant m$, the characteristic equation has n roots and hence there are o loci.

Rule 2: Origin of Loci
The loci originate when $K=0$ at the poles. When $K=0$, the roots of the characteristic equation are: $-P_{1},-P_{2}, \ldots,-P_{n}$.

If Rule 3: Termination of Loci
When $k \rightarrow \infty$, m loci terminate at the m zeros and $(n-m)$ loci terminate at ∞ along asymptotes. When $k \rightarrow \infty$, the roots of the characteristic equation are: $-z_{1},-z_{2}, \ldots,-z_{m}$.

Example: For the characteristic equation:

$$
S(S+2)(S+3)+K(S+1)=0
$$

Since:

$$
\begin{aligned}
& P_{1}=0, P_{2}=-2, P_{3}=-3 \quad D \quad n=3 \text { three poles } \\
& Z_{1}=-1
\end{aligned} \quad>m=1 \text { one zero }
$$

therefore, there are three branches of the root loci and there are three origins at $S=0, S=-2, S=-3$ when $K=0$.
on the other hand, when $K \rightarrow \infty$ there is one terminate at $S=-1$. So, there are $(n-m)=2$ two loci go to so along the asymptotes.

- Rule 4: Symmetry of the Root Locus.

The root locus is symmetry about the real axis of the complex -S plane. Since the values of the parameters of the characteristic equation are real, complex roots always occur ha conjugate pairs.
(1) Rule 5: Lection of Locus on the Real Axis.

A value of S on the real axis is a point in the rootlocus if the total number of poles and zeros on the real axis to the right of this polit is odd. That means, while constructing the root-locus on the real axis choose a test poiint on it. If the sum of poles and zeros to the right of this point is odd, then this point is a part of the root-loci.关保 example, for the previous example,
$S=-0.5$ is a point of the root-loci because there is one pole right it. While $s=-1.5$

is therefore not a point of the root loci.
$\sigma^{\text {Rule } 6: \text { Angles of Asymptotes. }}$
As $S \rightarrow \infty$, the ($n-m$) loci that do not terminate at the finite zeros of characteristic equation, approach infinity along asymptotes.

AS $S \rightarrow \infty$ we can let $\psi\left(S+z_{i}\right)=\Varangle S$ for $i=1,2, \ldots, m$ and $\psi\left(S+P_{i}\right)=\varangle S$ for $i=1,2, \ldots, n$. Hence from the angle condition, as $S \rightarrow \infty$ we obtain:

$$
m(\nless S)-n(\nless S)=\mp i \pi
$$

or

$$
\Varangle S=\frac{\mp i \pi}{(n-m)} \quad i=\left\{\begin{array}{l}
1,3,5, \ldots,[(n-m)-1] \\
1 \quad \text { when } n-m=1
\end{array}\right.
$$

Rule 7: intersection of Asymptotes.
The point where the asymptotes intersect the real axis is given by:

$$
\sigma_{c}=\frac{\sum \text { Poles }-\sum \text { zeros }}{n-m}
$$

$\stackrel{O R}{ }$

$$
\sigma_{c}=\frac{\sum_{i=1}^{n}\left(-P_{i}\right)-\sum_{i=1}^{m}\left(-z_{i}\right)}{n-m}
$$

for example, from the above example, one can get:

$$
\because \quad n=3 \quad m=1
$$

therefore, the angle of asymptotes:

$$
\nless S=\frac{\mp i \pi}{3-1}=\mp 90^{\circ}
$$

and the intersection with real axis:

$$
\sigma_{c}=\frac{(0-2-3)-(-1)}{3-1}=-2
$$

Rule 8: Breakaway and Break_in Points.
When two poles on the real axis are connected by a locus, the loci approach each other as K increases until they m eek and then depart from the real $a x$ is at a point called the breakallay point. The locus can also enter the real axis at a point that is called the break-in point. The location of the break allay and break-in points are determined from the condition:

和 $\Phi^{J \mp L_{n \circ} \text { eq }}$

6. Rule 9: Angles of Departure and Arrival.

The angle of departure of the locus at $K=0$ from a complex pole and the angle of arrival of the locus at $k \rightarrow \infty$ at a complex zero determined from the application of the angle condition:
(5) Summary of Procedure.
-1. Obtain the characteristic equation in the form:

$$
1+\frac{k\left(S+z_{i}\right)}{\left(S+P_{i}\right)}=0
$$

2. Locate the poles as (x) and zeros as (0) In S-plane.
3. Determine the number of loci from Rule 1.
4. Obtain the bcation of the root locus on the real axis from Rule 5.
S. Determine the angle of asymptotes from Rule 6.
5. Obtain the intersection of asymptotes with the real $a x$ is from Rule 7.
6. Find the breakaway and break_in points (if any) Rule 8.
7. Obtain the angle of departure from complex. poles and the angle of arrival of the complex zeros (if any) Rule 9.
8. If the locus crosses the Imaginary axis, then determine the corresponding value of K. The Routh criterion may be employed for this purpose.

Example: In the figure shown here, draw the root locus as k varies from 3 zero to infinity.

Solution:

1. the characteristic equation of the closed -loop system is given by:

$$
(S+2)\left(S^{2}+8 S+25\right)+k(S+6)=0
$$

$O R$

$$
\frac{k(S+6)}{(S+2)\left(S^{2}+8 S+25\right)}=-1
$$

2. It can be observed that there are three poles at: if $K=0 \Rightarrow S=-2, S=-4+3 j, S=-4-3 j$

$$
\therefore n=3 \text { at } k=0 \text { (3pstes) }
$$

if $K=\infty \Rightarrow S=-6$

$$
\therefore m=1 \text { at } k=\infty \text { (1 zero) }
$$

\therefore there are three loci.

3. The angle of asymptotes is:

$$
\Varangle S=\frac{\mp i \pi}{n-m}=\mp 90^{\circ}
$$

4. Intersection of asymptotes:

$$
\sigma_{c}=\frac{\text { Poles }-\sum \text { zeros }}{n-m}=\frac{(-2-4+3 j-4-3 j)-(-6)}{3-1}=-2
$$

So There are no breakaway or break-in points.
6. The angle of departure from complex poles at $-4+3 j$, we let s be a point on the root-locus infinitesimally close to $-4+3 j$ as shown in the fig. we draw vectors to this point from all poles and zeros to obtain:

Chapter Obit: Root-Eaxus Technique

$$
\begin{aligned}
& \theta_{2}=\Varangle(S+4+3 j)=90^{\circ} \\
& \theta_{3}=\Varangle(S+6)=\tan ^{-1}\left(\frac{3}{2}\right)=56.3^{\circ}
\end{aligned}
$$

substituting the angle values in the angle condition results in

$$
\begin{aligned}
& 56.3-123.7-\Varangle(S+4-3 j)-90^{\circ}=+180 \\
\therefore & \Varangle(S+4-3 j)=-337.3^{\circ} \text { or } 22.6^{\circ}
\end{aligned}
$$

the angle of departure of the locus from complex conjugate pole at $-4-3 j$ is -22.6°.
60. It is seen from the last figure that $S=-3$ is a root of the characteristic equation for a value of " K " that can be determined from the magnitude condition.

$$
\frac{|S+6|}{|S+2||S+4-3 j||S+4+3 j|}=\frac{1}{k}
$$

at $S=-3$ there is one pole right it $S 0$,

$$
\begin{aligned}
& \quad \frac{|3|}{|-1||1-3 j||1+3 j|}=\frac{3}{\mid * \sqrt{10} * \sqrt{10}}=\frac{1}{k} \\
& \therefore K=\frac{10}{3}
\end{aligned}
$$

70 We observe from the root_ locus figure that the root locus does not cross the imaginary axis for $a \leqslant k<\infty$, Hence, the control system is asymptotically stable for any postive value of k.

Example: Draw the root locus as K varies from zero to infinity and determine the value of K at which the locus crosses the imaginary axis for the system shown in the figure below.

Solution:
The characteristic equation is:

$$
\frac{k}{s(s+4)(s+6)}=-1
$$

The angle condition is:

$$
\Varangle s+\Varangle(s+4)+\Varangle(s+6)=\mp i \pi
$$

and the magnitude condition:

$$
\frac{1}{|s||s+4||s+6|}=\frac{1}{k}
$$

There are no zeros $\Rightarrow m=0$ at $k=\infty$
The poles are at $S=0 \quad S=-4 \quad S=-6=0 \quad n=3$ at $k=0$
The angle of asymptotes are

$$
\begin{aligned}
& \Varangle s=\frac{\mp i \pi}{n-m}=\frac{\mp i \pi}{3-0}=\mp 60^{\circ} \\
& \begin{aligned}
\sigma_{c} & =\frac{\sum \text { Poles }-\sum \text { zeros }}{n-m} \\
& =\frac{[0+(-4)+(-6)]-[(0)]}{3-0} \\
& =-3.33
\end{aligned}
\end{aligned}
$$

The breakaway point is:

$$
\begin{aligned}
& S(S+4)(S+6)+K=0 \quad \text { (S } \\
\therefore & K=-\left(S^{3}+10 S^{2}+24 S\right)
\end{aligned}
$$

$$
\therefore \frac{d K}{d S}=-\left(3 S^{2}+20 S+24\right)=0
$$

$\therefore S=-1.569$ or $S=-5.097$

The value of k may be computed by Routh. methed for the chara"cteristic equation :-

$$
\begin{array}{l|ll}
s^{3}+10 s^{2}+24 s+k=0 \\
s^{3} & 1 & 24 \\
s^{2} & 10 & k \\
s^{1} & \frac{240-k}{10} & 0 \\
s^{0} & k
\end{array}
$$

from Srow : $\frac{240-K}{10}=0 \Rightarrow 240-K=0$
$\therefore K=240$ at the locus cuts the imaginary $a x$ is at

$$
\omega=\sqrt{24}
$$

Example: Draw the root locus for the system shown in the figuse below as the parameter a is varied from zero to infinifty.
Solution:
The characteristic equation of this system is:

$$
S(S+6)(S+9)+400=0
$$

which can be re-arranged as:

$$
\begin{aligned}
& \quad-(S+a)=\frac{400}{s(S+6)}>0-a=\frac{400}{S(S+6)}+s \\
& \therefore-a=\frac{s^{3}+6 S^{2}+400}{s(S+6)} \\
& \therefore \quad S^{3}+6 S^{2}+400+a s(S+6)=0 \\
& \quad 1+\frac{a s(S+6)}{S^{3}+6 S^{2}+400}=0 \\
& \therefore \quad \frac{a s(s+6)}{(S+10)(3-2-6 j)(s-2+6 j)}=-1
\end{aligned}
$$

The angle condition is:

$$
\Varangle 5+\Varangle(5+6)-\Varangle(3+10)-\Varangle(5-2-6 j)-\Varangle(5-2+6 j)=+i \pi
$$

and the magnitude condition is :

$$
\frac{|5||x+6|}{|5+|0|| צ-2-6 j| | 5-2+6 j \mid}-=\frac{1}{9}
$$

\therefore The poles are at: $S=-10, S=2+6 j, \quad S=2-6 j$ on $n=3$ The zeros at: $S=0, S=-6 \quad(m=2)$

The angle of asymptotes is:

$$
\Varangle S=\frac{\mp i \pi}{n-m}=\frac{\mp i \pi}{3-2}=\mp 180^{\circ}
$$

So, the asymptotes is the real axis and hence the point of intersection of asymptotes with real axis is not meaningful.

The breakallay and break_in point can be determined as:

$$
\begin{aligned}
& a=\frac{-\left(s^{3}+6 s^{2}+400\right)}{s(s+6)} \\
& \Rightarrow \frac{d a}{d s}=\frac{-s(s+6)\left(3 s^{2}+12 s\right)+\left(s^{3}+6 s^{2}+400\right)(2 s+6)}{s^{2}(s+6)^{2}} \\
& \therefore 2 s^{4}+15 s^{3}+6 s^{2}+728 s+2400=0
\end{aligned}
$$

this quartic potynominal has four roots, the only admissible root is the one between 0 and -6, this root is obtained as - 3.03 which is the break_in point.

The angle of departure from the complex pole at $S=2+6 j$ is obtained from angle condition as:

$$
\begin{aligned}
& \theta_{1}=\Varangle S=\tan ^{-1}\left(\frac{6}{2}\right)=71.57^{\circ} \\
& \theta_{2}=\Varangle(S+6)=\tan ^{-1}\left(\frac{6}{8}\right)=36.87^{\circ} \\
& \theta_{3}=\Varangle(S+10)=\tan ^{-1}\left(\frac{6}{12}\right)=26.57^{\circ} \\
& \theta_{4}=\Varangle(S-2+6 j)=90^{\circ}
\end{aligned}
$$

Substituting these values in the angle condition:

$$
71.57^{\circ}+36.87^{\circ}-26.57^{\circ}-90^{\circ}-\Varangle(S-2-6 j)=180
$$

$\therefore \quad<(s-2-6 j)=-188.13^{\circ}$
and

$$
4(s-2+6 j)=188.13^{\circ}
$$

The value of a at which the locus crosses the lm aginary axis can be ortaired from the Rout cri. tenias:

$$
\begin{aligned}
& s^{3}+(6+a) s^{2}+6 a s+400=0 \\
& \begin{array}{c|cc}
s^{3} & 1 & 6 a \\
s^{2} & 6+a & 400
\end{array} \\
& S^{\prime} \quad \frac{6 a^{2}+36 a-400}{6+9} 0 \\
& \begin{array}{l|l}
\circ & 400 \\
\hline
\end{array} \\
& \frac{6 a^{2}+36 a-400}{6+a}=0 \quad \text { rs } a=5.7
\end{aligned}
$$

hence, for asymptotes stability of the system we need a>5.7

Example; Determine the root locus for the characteristic eqnation:

$$
1+\frac{K(S+6)}{S(S+4)}=0
$$

Solution:
The poles are at: $S=0, S=-4>0 \quad n=2$ at $k=0$
The zeros are at: $s=-6 \quad \rightarrow \quad m=1$ at $k=\infty$
;

The angle of asymptotes:

$$
\nless S=\frac{\mp i \pi}{n-m}=\frac{\mp i \pi}{2-1}=\mp 180^{\circ}
$$

\therefore the asymptotes is the real axis, and hence the point of intersection of the asymptotes with the real axis is not. meaningful.

The breakallay and break-in points are:

$$
\begin{gathered}
K=\frac{-S(S+4)}{S+6} \\
\therefore \frac{d K}{d S}=\frac{-(S+6)(2 S+4)+S(S+4)}{(S+6)^{2}}=0 \\
\therefore S^{2}+12 S+24=0
\end{gathered}
$$

which gives:
$S=-2.54$ as breakaway point and
$S=-9.46$ as breaking point.

Basic concepts of measurements

The process or the act of measurement consists of obtaining a quantitative comparison between a predefined A Measurement is an act of assigning a specific value to a physical variable. That physical variable becomes the Measured Variable.

Measurement is also a fundamental element of any control process. The engineer is not only interested in the measurement of physical variables but also concerned with their control. The two function are closely related, however because one must be able to measure a variable such as temperature or flow in order to control it.

Most measurement system may consist of part or all of four general stages:

- A sensor - Transducer Stage.
- An Intermediate Stage or signal - Conditioning Stage.
- A Terminating Stage - Output Stage.
- Feedback - Control Stage.

System configuration:

Instrumentation is used for indicating, measuring and recording physical quantities such as flow, temperature, level, distance, angle, or pressure. The most important function that they perform is to convert data into information. The primary elements of instruments are sensors and transducers. Every instrumentation system contains one or more of the following elements, which represent the possible arrangement of functional element is necessary to describe any instrument.

Measured quantity: is a physical quantity to be measured such as pressure, level, strain, displacement, temperature, etc.

Primary sensing element: it receives energy from the measured medium and produce an output depending.

Variable conversation element: it uses to perform the desired function, which is necessary to convert the measured variable to be more suitable variable.

Variable manipulation element: it uses to change the numerical value according to some definite rule.

Data transmission element: it is necessary to transmit the data from separated physical element to another.

Data presentation element: it is important to recognize the measured quantity by one of the human senses, in order to monitor, control or analysis purpose such as simple indication pointer moving over a scale or recording of a pin moving over a chart.

Measurement systems

- Choice of instrumentation - Calibration
- Signal Processing and Data acquisition

Different types of transducers

- Measurements with strain gauges
- Pressure transducers
- Position measurements
- Velocity measurements

Pressure Thermometer Gauge

This thermometer works on the principle of thermal expansion of the fluid with the change in temperature is to be measured. Temperature change can be determined using these thermometers, which rely on pressure measurement. Usually Mercury is used as liquid Principle of working, where
expansion of liquid due to an increase in the pressure within a limited volume Range. It follows the ideal gas law $\mathrm{PV}=\mathrm{mRT}$, for constant volume $\mathrm{P} \propto \mathrm{T}$. The change in pressure of the fluid is measured by a suitable pressure transducer, such as the Bourdon tube.

The main constructions of the pressure thermometer (Figure below) are:

1. Bulb
2. Flexible capillary tube
3. Bourdon tube
4. Linkage and gearing mechanism
5. Pointer and scale arrangement

Pressure Gauge

The primary sensing element is the piston, which also serves the function of the variable conversation. Since, it converts the fluid pressure into an equivalent force on the piston face. The force is transmitted by the piston rod to a spring, which converts forces into a proportional displacement to manipulated by the linkage to give a pointer displacement. The pointer scale indicates the pressure, as presented in data elements shown below:

Accuracy, Error, Precision, and Uncertainty

All measurements of physical quantities are subject to uncertainties in the measurements. Variability in the results of repeated measurements arises because variables that can affect the measurement result are impossible to hold constant. Even if the "circumstances," could be precisely controlled, the result would still have an error associated with it. This is because the scale was manufactured with a certain level of quality, it is often difficult to read the scale perfectly, fractional estimations between scale marking may be made and etc. Of course, steps can be taken to limit the amount of uncertainty but it is always there. Thus, the result of any physical measurement has two essential components:
(1) A numerical value (in a specified system of units) giving the best estimate possible of the quantity measured,
(2) the degree of uncertainty associated with this estimated value.

Definitions

Accuracy of the measurement refers to how close the measured value is to the true or accepted value. If the true value is not known, then the accuracy of measurement can only be estimated (typically, this must be done with extreme care).

Thus,

$$
A=\frac{X_{n}}{Y_{\boldsymbol{n}}}
$$

Where:
A: is the relative accuracy
X_{n} : is the measured value
Y_{n} : is the true value

The percentage of accuracy (\boldsymbol{a}) is written as:

$$
a=\frac{X_{n}}{Y_{n}} * 100 \%
$$

Precision refers to how close together a group of measurements actually are to each other. In many cases, when precision is high and accuracy is low. It is used to indicate the reliability and/or repeatability of a measurement, as reflected by the number of significant figures used to represent the measured value. If the true value is not known, the measured value is repeated multi times so that the precision is a closeness of single measured value with the multi measured values to the same measured variable from the mean of these values.

So,

$$
P_{i}=1-\left|\frac{X_{i}-\overline{X_{n}}}{\overline{X_{n}}}\right|
$$

Where:

$$
\overline{X_{n}}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

$\boldsymbol{P}_{\boldsymbol{i}}:$ is the precision of measured value of (i)
$\boldsymbol{X}_{\boldsymbol{i}}$: is the measured value of (i)
$\overline{\boldsymbol{X}_{\boldsymbol{n}}}$: is the mean value of the multi measured values (n)

Resolution it refers to the ability of instrument to sense the smallest change in the measured variable, which is defined by:

$$
\text { Res }=\frac{\text { Full scale deflection }}{\text { No.of division }}
$$

Sensitivity it refers to the ratio of the linear movement of the pointer on the instrument to the change of the measured variable, which is defined by:

Sens $=\frac{Q_{o 2}-Q_{o 1}}{Q_{i 2}-Q_{i 1}}$

Readability it refers to the closeness with which the scale of the instrument may read. e.g. An instrument is used to measure a parameter X in range from 0 to 50 varying 12 scale, where another instrument is used to measure the same parameter in the same range but having 6 scale. Thus, the first one has higher readability but with less resolution, where:

$$
\begin{aligned}
& \text { Res } 1=\frac{50-0}{12}=\frac{50}{12} \\
& \text { Res } 2=\frac{50-0}{6}=\frac{50}{6}
\end{aligned}
$$

So, the resolution is decreased with increasing the number of divisions.

Measurement uncertainty: it is a parameter characterizing the range of values within which the value of the measurand can be said to lie within a specified level of confidence. The uncertainty is a quantitative indication of the quality of the result. It is influenced by systematic and random measurement errors. The systematic errors are caused by abnormalities in gain and zero settings of the measuring equipment and tools. The random errors caused by noise and induced voltages and/or currents.
The uncertainty of measuring instruments is usually given by two values: uncertainty of reading and uncertainty over the full scale. These two specifications together determine the total measurement uncertainty.

i. Uncertainty relative to reading

An indication of a percentage deviation without further specification also refers to the reading.

A voltmeter which reads $70,00 \mathrm{~V}$ and has a " $\pm 5 \%$ reading" specification, will have an uncertainty of $3,5 \mathrm{~V}(5 \%$ of 70 V$)$ above and below. The actual voltage will be between 66,5 en 73,5 volt.

Figure 1 Uncertainty of 5% reading and a read value of 70 V

ii. Uncertainty relative to full scale

This type of inaccuracy is caused by offset errors and linearity errors of amplifiers. This specification refers to the full-scale range that is used.

A voltmeter may have a specification "3 \% full scale". If during a measurement the 100 V range is selected (= full scale), then the uncertainty is 3% of $100 \mathrm{~V}=3 \mathrm{~V}$ regardless of the voltage measured. If the readout in this range 70 V , then the real voltage is between 67 and 73

Figure 2 Uncertainty of 3 \% full scale in the 100 V range volts.

Figure 2 makes clear that this type of tolerance is independent of the reading. Would a value of 0 V being read; in this case would the voltage in reality between -3 and +3 volts.

Measurement Uncertainty/Error:

The estimated deviation of a measured value from the true value. The true value may or may not be known. There are three types (sources) of error: measurement mistakes, random errors, and systematic errors.

- Measurement mistakes are "illegitimate errors" since they are due to sloppiness and/or lack of care in the measurement process and are avoidable. Mistakes errors should always be completely eliminated.
- Random errors result from (hopefully small) uncontrolled variability of the environment, equipment, and/or other subtle aspects of the measurement. The individual measured values randomly deviate high or low of an average value.
- Systematic errors result in the consistent deviation of a measurement (on average, either high or low as compared to the true value) due to equipment problems or neglect (or ignorance) of some other important factor in the measurement process.

There are three formulae used to express the errors of measurement:
$\underline{\text { Absolute } \operatorname{Error}\left(\boldsymbol{E}_{\boldsymbol{a}}\right): \text { these errors denote the difference between the true value and the measured }}$ value, as:

$$
E_{a}=M-T
$$

Where, M is the measurement and T is the true value
Relative Error $\left(\boldsymbol{E}_{\boldsymbol{r}}\right)$ it is a relative of the measured quantity to another quantity such as the true value.

$$
E_{r}=\frac{E_{a}}{T}=\left|\frac{M-T}{T}\right|
$$

Percentage Error $\left(\boldsymbol{E}_{\boldsymbol{p}}\right):$ If the true value of a quantity is known, the percentage error of a measurement is simply the difference between the measurement M and the true value T , divided by the true value, and then multiplied by 100%.

$$
\boldsymbol{E}_{\boldsymbol{p}}=\frac{\boldsymbol{E}_{\boldsymbol{a}}}{\boldsymbol{T}} * 100 \%=\left|\frac{M-\boldsymbol{T}}{\boldsymbol{T}}\right| * 100 \%
$$

Classification of errors:

Because errors may arise from every source imaginable, there are many different ways in which they can be classified. Two categories often used to classify the errors, these are:
1.) Systematic errors: This type may be avoided and corrected and can be subdivided into:
a) Gross Errors: These are mistakes or blunders including:
i. Misreading of instrument.
ii. Incorrect adjustment of apparatus.
iii. Improper application of instrument.
iv. Computational mistake.
b) Instrument Errors: These are defects or shortcoming of instrument such as:
i. Error in calibration.
ii. Damage internal
iii. Unsuitable internal element.
iv. Worn and defective parts.
c) Environmental Errors: Physical effects in influence on the: experimental equipment and quantity being measured; these influences are:
i. Temperature.
ii. Pressure.
iii. Humidity.
iv. Electromagnetic field.
d) Observational Errors: These pertain to habits of the observer, such as:
i. Imperfect technique.
ii. Poor judgment.
iii. Peculiarities in making observations
2.) Random Errors: Random errors are those which are accidental; whose magnitude (and sign) fluctuates in a manner that can't be predicted from a knowledge of the measuring system and the condition of measurement. It can occur for a variety of reasons such as:
i. Lack of equipment sensitivity.
ii. Noise in the measurement
iii. Imprecise definition.

Other Source of Errors:

In addition to the errors mentioned before, there are a number of sources of errors These are:
i. Noise.
ii. Response time.
iii. Design limitation.
iv. Energy gained or lost by interaction.
v. Transmission.
vi. Deterioration of the measuring system.

